Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funresdfunsnss | GIF version |
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in a subset of the function itself. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 21-Jan-2023.) |
Ref | Expression |
---|---|
funresdfunsnss | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) ⊆ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 5205 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | resdmdfsn 4927 | . . . . 5 ⊢ (Rel 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋}))) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋}))) |
4 | 3 | adantr 274 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ (V ∖ {𝑋})) = (𝐹 ↾ (dom 𝐹 ∖ {𝑋}))) |
5 | 4 | uneq1d 3275 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) = ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉})) |
6 | funfn 5218 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
7 | fnsnsplitss 5684 | . . 3 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) ⊆ 𝐹) | |
8 | 6, 7 | sylanb 282 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (dom 𝐹 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) ⊆ 𝐹) |
9 | 5, 8 | eqsstrd 3178 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ (V ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉}) ⊆ 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∖ cdif 3113 ∪ cun 3114 ⊆ wss 3116 {csn 3576 〈cop 3579 dom cdm 4604 ↾ cres 4606 Rel wrel 4609 Fun wfun 5182 Fn wfn 5183 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |