ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfunfv GIF version

Theorem eqfunfv 5695
Description: Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.)
Assertion
Ref Expression
eqfunfv ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) = (𝐺𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺

Proof of Theorem eqfunfv
StepHypRef Expression
1 funfn 5310 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 funfn 5310 . 2 (Fun 𝐺𝐺 Fn dom 𝐺)
3 eqfnfv2 5691 . 2 ((𝐹 Fn dom 𝐹𝐺 Fn dom 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) = (𝐺𝑥))))
41, 2, 3syl2anb 291 1 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) = (𝐺𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wral 2485  dom cdm 4683  Fun wfun 5274   Fn wfn 5275  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288
This theorem is referenced by:  ennnfonelemex  12860
  Copyright terms: Public domain W3C validator