ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundmfibi GIF version

Theorem fundmfibi 6571
Description: A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
fundmfibi (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))

Proof of Theorem fundmfibi
StepHypRef Expression
1 fundmfi 6570 . . 3 ((𝐹 ∈ Fin ∧ Fun 𝐹) → dom 𝐹 ∈ Fin)
21ancoms 264 . 2 ((Fun 𝐹𝐹 ∈ Fin) → dom 𝐹 ∈ Fin)
3 funfn 4996 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
4 fnfi 6569 . . 3 ((𝐹 Fn dom 𝐹 ∧ dom 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
53, 4sylanb 278 . 2 ((Fun 𝐹 ∧ dom 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
62, 5impbida 561 1 (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wcel 1434  dom cdm 4399  Fun wfun 4961   Fn wfn 4962  Fincfn 6385
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-iord 4156  df-on 4158  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-1o 6111  df-er 6220  df-en 6386  df-fin 6388
This theorem is referenced by:  f1dmvrnfibi  6576  fihasheqf1oi  10029  negfi  10482
  Copyright terms: Public domain W3C validator