| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fundmfibi | GIF version | ||
| Description: A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.) |
| Ref | Expression |
|---|---|
| fundmfibi | ⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fundmfi 7021 | . . 3 ⊢ ((𝐹 ∈ Fin ∧ Fun 𝐹) → dom 𝐹 ∈ Fin) | |
| 2 | 1 | ancoms 268 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ Fin) → dom 𝐹 ∈ Fin) |
| 3 | funfn 5298 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 4 | fnfi 7020 | . . 3 ⊢ ((𝐹 Fn dom 𝐹 ∧ dom 𝐹 ∈ Fin) → 𝐹 ∈ Fin) | |
| 5 | 3, 4 | sylanb 284 | . 2 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ Fin) → 𝐹 ∈ Fin) |
| 6 | 2, 5 | impbida 596 | 1 ⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2175 dom cdm 4673 Fun wfun 5262 Fn wfn 5263 Fincfn 6817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-1o 6492 df-er 6610 df-en 6818 df-fin 6820 |
| This theorem is referenced by: f1dmvrnfibi 7028 fihasheqf1oi 10913 negfi 11458 4sqlemffi 12638 |
| Copyright terms: Public domain | W3C validator |