ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundmfibi GIF version

Theorem fundmfibi 6904
Description: A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
fundmfibi (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))

Proof of Theorem fundmfibi
StepHypRef Expression
1 fundmfi 6903 . . 3 ((𝐹 ∈ Fin ∧ Fun 𝐹) → dom 𝐹 ∈ Fin)
21ancoms 266 . 2 ((Fun 𝐹𝐹 ∈ Fin) → dom 𝐹 ∈ Fin)
3 funfn 5218 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
4 fnfi 6902 . . 3 ((𝐹 Fn dom 𝐹 ∧ dom 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
53, 4sylanb 282 . 2 ((Fun 𝐹 ∧ dom 𝐹 ∈ Fin) → 𝐹 ∈ Fin)
62, 5impbida 586 1 (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2136  dom cdm 4604  Fun wfun 5182   Fn wfn 5183  Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  f1dmvrnfibi  6909  fihasheqf1oi  10701  negfi  11169
  Copyright terms: Public domain W3C validator