| Intuitionistic Logic Explorer Theorem List (p. 76 of 158) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | enq0tr 7501 | The equivalence relation for nonnegative fractions is transitive. Lemma for enq0er 7502. (Contributed by Jim Kingdon, 14-Nov-2019.) |
| ⊢ ((𝑓 ~Q0 𝑔 ∧ 𝑔 ~Q0 ℎ) → 𝑓 ~Q0 ℎ) | ||
| Theorem | enq0er 7502 | The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.) |
| ⊢ ~Q0 Er (ω × N) | ||
| Theorem | enq0breq 7503 | Equivalence relation for nonnegative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ~Q0 〈𝐶, 𝐷〉 ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶))) | ||
| Theorem | enq0eceq 7504 | Equivalence class equality of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 24-Nov-2019.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) → ([〈𝐴, 𝐵〉] ~Q0 = [〈𝐶, 𝐷〉] ~Q0 ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶))) | ||
| Theorem | nqnq0pi 7505 | A nonnegative fraction is a positive fraction if its numerator and denominator are positive integers. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → [〈𝐴, 𝐵〉] ~Q0 = [〈𝐴, 𝐵〉] ~Q ) | ||
| Theorem | enq0ex 7506 | The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| ⊢ ~Q0 ∈ V | ||
| Theorem | nq0ex 7507 | The class of positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| ⊢ Q0 ∈ V | ||
| Theorem | nqnq0 7508 | A positive fraction is a nonnegative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| ⊢ Q ⊆ Q0 | ||
| Theorem | nq0nn 7509* | Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.) |
| ⊢ (𝐴 ∈ Q0 → ∃𝑤∃𝑣((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ 𝐴 = [〈𝑤, 𝑣〉] ~Q0 )) | ||
| Theorem | addcmpblnq0 7510 | Lemma showing compatibility of addition on nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.) |
| ⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) ∧ ((𝐹 ∈ ω ∧ 𝐺 ∈ N) ∧ (𝑅 ∈ ω ∧ 𝑆 ∈ N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → 〈((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)), (𝐵 ·o 𝐺)〉 ~Q0 〈((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)), (𝐷 ·o 𝑆)〉)) | ||
| Theorem | mulcmpblnq0 7511 | Lemma showing compatibility of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.) |
| ⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) ∧ ((𝐹 ∈ ω ∧ 𝐺 ∈ N) ∧ (𝑅 ∈ ω ∧ 𝑆 ∈ N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → 〈(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)〉 ~Q0 〈(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)〉)) | ||
| Theorem | mulcanenq0ec 7512 | Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ N) → [〈(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)〉] ~Q0 = [〈𝐵, 𝐶〉] ~Q0 ) | ||
| Theorem | nnnq0lem1 7513* | Decomposing nonnegative fractions into natural numbers. Lemma for addnnnq0 7516 and mulnnnq0 7517. (Contributed by Jim Kingdon, 23-Nov-2019.) |
| ⊢ (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧ 𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ((((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ (𝑠 ∈ ω ∧ 𝑓 ∈ N)) ∧ ((𝑢 ∈ ω ∧ 𝑡 ∈ N) ∧ (𝑔 ∈ ω ∧ ℎ ∈ N))) ∧ ((𝑤 ·o 𝑓) = (𝑣 ·o 𝑠) ∧ (𝑢 ·o ℎ) = (𝑡 ·o 𝑔)))) | ||
| Theorem | addnq0mo 7514* | There is at most one result from adding nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.) |
| ⊢ ((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧ 𝑧 = [〈((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)〉] ~Q0 )) | ||
| Theorem | mulnq0mo 7515* | There is at most one result from multiplying nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.) |
| ⊢ ((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧ 𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)〉] ~Q0 )) | ||
| Theorem | addnnnq0 7516 | Addition of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) → ([〈𝐴, 𝐵〉] ~Q0 +Q0 [〈𝐶, 𝐷〉] ~Q0 ) = [〈((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)〉] ~Q0 ) | ||
| Theorem | mulnnnq0 7517 | Multiplication of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 19-Nov-2019.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) → ([〈𝐴, 𝐵〉] ~Q0 ·Q0 [〈𝐶, 𝐷〉] ~Q0 ) = [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 ) | ||
| Theorem | addclnq0 7518 | Closure of addition on nonnegative fractions. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 +Q0 𝐵) ∈ Q0) | ||
| Theorem | mulclnq0 7519 | Closure of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ Q0) | ||
| Theorem | nqpnq0nq 7520 | A positive fraction plus a nonnegative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q0) → (𝐴 +Q0 𝐵) ∈ Q) | ||
| Theorem | nqnq0a 7521 | Addition of positive fractions is equal with +Q or +Q0. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵)) | ||
| Theorem | nqnq0m 7522 | Multiplication of positive fractions is equal with ·Q or ·Q0. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵)) | ||
| Theorem | nq0m0r 7523 | Multiplication with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.) |
| ⊢ (𝐴 ∈ Q0 → (0Q0 ·Q0 𝐴) = 0Q0) | ||
| Theorem | nq0a0 7524 | Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.) |
| ⊢ (𝐴 ∈ Q0 → (𝐴 +Q0 0Q0) = 𝐴) | ||
| Theorem | nnanq0 7525 | Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.) |
| ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 = ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 )) | ||
| Theorem | distrnq0 7526 | Multiplication of nonnegative fractions is distributive. (Contributed by Jim Kingdon, 27-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶))) | ||
| Theorem | mulcomnq0 7527 | Multiplication of nonnegative fractions is commutative. (Contributed by Jim Kingdon, 27-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴)) | ||
| Theorem | addassnq0lemcl 7528 | A natural number closure law. Lemma for addassnq0 7529. (Contributed by Jim Kingdon, 3-Dec-2019.) |
| ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → (((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω ∧ (𝐽 ·o 𝐿) ∈ N)) | ||
| Theorem | addassnq0 7529 | Addition of nonnegative fractions is associative. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶))) | ||
| Theorem | distnq0r 7530 | Multiplication of nonnegative fractions is distributive. Version of distrnq0 7526 with the multiplications commuted. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴))) | ||
| Theorem | addpinq1 7531 | Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| ⊢ (𝐴 ∈ N → [〈(𝐴 +N 1o), 1o〉] ~Q = ([〈𝐴, 1o〉] ~Q +Q 1Q)) | ||
| Theorem | nq02m 7532 | Multiply a nonnegative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ (𝐴 ∈ Q0 → ([〈2o, 1o〉] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴)) | ||
| Definition | df-inp 7533* |
Define the set of positive reals. A "Dedekind cut" is a partition of
the positive rational numbers into two classes such that all the numbers
of one class are less than all the numbers of the other.
Here we follow the definition of a Dedekind cut from Definition 11.2.1 of [HoTT], p. (varies) with the one exception that we define it over positive rational numbers rather than all rational numbers. A Dedekind cut is an ordered pair of a lower set 𝑙 and an upper set 𝑢 which is inhabited (∃𝑞 ∈ Q𝑞 ∈ 𝑙 ∧ ∃𝑟 ∈ Q𝑟 ∈ 𝑢), rounded (∀𝑞 ∈ Q(𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q(𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) and likewise for 𝑢), disjoint (∀𝑞 ∈ Q¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢)) and located (∀𝑞 ∈ Q∀𝑟 ∈ Q(𝑞 <Q 𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))). See HoTT for more discussion of those terms and different ways of defining Dedekind cuts. (Note: This is a "temporary" definition used in the construction of complex numbers, and is intended to be used only by the construction.) (Contributed by Jim Kingdon, 25-Sep-2019.) |
| ⊢ P = {〈𝑙, 𝑢〉 ∣ (((𝑙 ⊆ Q ∧ 𝑢 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))))} | ||
| Definition | df-i1p 7534* | Define the positive real constant 1. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by Jim Kingdon, 25-Sep-2019.) |
| ⊢ 1P = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 | ||
| Definition | df-iplp 7535* |
Define addition on positive reals. From Section 11.2.1 of [HoTT], p.
(varies). We write this definition to closely resemble the definition
in HoTT although some of the conditions are redundant (for example,
𝑟
∈ (1st ‘𝑥) implies 𝑟 ∈ Q)
and can be simplified as
shown at genpdf 7575.
This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.) |
| ⊢ +P = (𝑥 ∈ P, 𝑦 ∈ P ↦ 〈{𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1st ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (2nd ‘𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}〉) | ||
| Definition | df-imp 7536* |
Define multiplication on positive reals. Here we use a simple
definition which is similar to df-iplp 7535 or the definition of
multiplication on positive reals in Metamath Proof Explorer. This is as
opposed to the more complicated definition of multiplication given in
Section 11.2.1 of [HoTT], p. (varies),
which appears to be motivated by
handling negative numbers or handling modified Dedekind cuts in which
locatedness is omitted.
This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| ⊢ ·P = (𝑥 ∈ P, 𝑦 ∈ P ↦ 〈{𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1st ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (2nd ‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}〉) | ||
| Definition | df-iltp 7537* |
Define ordering on positive reals. We define 𝑥<P
𝑦 if there is a
positive fraction 𝑞 which is an element of the upper cut
of 𝑥
and the lower cut of 𝑦. From the definition of < in
Section 11.2.1
of [HoTT], p. (varies).
This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | ||
| Theorem | npsspw 7538 | Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ P ⊆ (𝒫 Q × 𝒫 Q) | ||
| Theorem | preqlu 7539 | Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 = 𝐵 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) | ||
| Theorem | npex 7540 | The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) |
| ⊢ P ∈ V | ||
| Theorem | elinp 7541* | Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))))) | ||
| Theorem | prop 7542 | A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | ||
| Theorem | elnp1st2nd 7543* | Membership in positive reals, using 1st and 2nd to refer to the lower and upper cut. (Contributed by Jim Kingdon, 3-Oct-2019.) |
| ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘𝐴) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐴))) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ (1st ‘𝐴) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐴))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐴) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐴)))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘𝐴) ∧ 𝑞 ∈ (2nd ‘𝐴)) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘𝐴) ∨ 𝑟 ∈ (2nd ‘𝐴)))))) | ||
| Theorem | prml 7544* | A positive real's lower cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝐿) | ||
| Theorem | prmu 7545* | A positive real's upper cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝑈) | ||
| Theorem | prssnql 7546 | The lower cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) | ||
| Theorem | prssnqu 7547 | The upper cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝑈 ⊆ Q) | ||
| Theorem | elprnql 7548 | An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) | ||
| Theorem | elprnqu 7549 | An element of a positive real's upper cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ Q) | ||
| Theorem | 0npr 7550 | The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) |
| ⊢ ¬ ∅ ∈ P | ||
| Theorem | prcdnql 7551 | A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → (𝐶 <Q 𝐵 → 𝐶 ∈ 𝐿)) | ||
| Theorem | prcunqu 7552 | An upper cut is closed upwards under the positive fractions. (Contributed by Jim Kingdon, 25-Nov-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐶 ∈ 𝑈) → (𝐶 <Q 𝐵 → 𝐵 ∈ 𝑈)) | ||
| Theorem | prubl 7553 | A positive fraction not in a lower cut is an upper bound. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <Q 𝐶)) | ||
| Theorem | prltlu 7554 | An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐵 <Q 𝐶) | ||
| Theorem | prnmaxl 7555* | A lower cut has no largest member. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → ∃𝑥 ∈ 𝐿 𝐵 <Q 𝑥) | ||
| Theorem | prnminu 7556* | An upper cut has no smallest member. (Contributed by Jim Kingdon, 7-Nov-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝑈) → ∃𝑥 ∈ 𝑈 𝑥 <Q 𝐵) | ||
| Theorem | prnmaddl 7557* | A lower cut has no largest member. Addition version. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → ∃𝑥 ∈ Q (𝐵 +Q 𝑥) ∈ 𝐿) | ||
| Theorem | prloc 7558 | A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 <Q 𝐵) → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈)) | ||
| Theorem | prdisj 7559 | A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈)) | ||
| Theorem | prarloclemlt 7560 | Two possible ways of contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7570. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ (((𝑋 ∈ ω ∧ (〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([〈(𝑦 +o 1o), 1o〉] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑋), 1o〉] ~Q ·Q 𝑃))) | ||
| Theorem | prarloclemlo 7561* | Contracting the lower side of an interval which straddles a Dedekind cut. Lemma for prarloc 7570. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ (((𝑋 ∈ ω ∧ (〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([〈(𝑦 +o 1o), 1o〉] ~Q ·Q 𝑃)) ∈ 𝐿 → (((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o suc 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)))) | ||
| Theorem | prarloclemup 7562 | Contracting the upper side of an interval which straddles a Dedekind cut. Lemma for prarloc 7570. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ (((𝑋 ∈ ω ∧ (〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈 → (((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o suc 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)))) | ||
| Theorem | prarloclem3step 7563* | Induction step for prarloclem3 7564. (Contributed by Jim Kingdon, 9-Nov-2019.) |
| ⊢ (((𝑋 ∈ ω ∧ (〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o suc 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)) | ||
| Theorem | prarloclem3 7564* | Contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7570. (Contributed by Jim Kingdon, 27-Oct-2019.) |
| ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃 ∈ Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +o 2o), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)) | ||
| Theorem | prarloclem4 7565* | A slight rearrangement of prarloclem3 7564. Lemma for prarloc 7570. (Contributed by Jim Kingdon, 4-Nov-2019.) |
| ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ 𝑃 ∈ Q) → (∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑥), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +o 2o), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈))) | ||
| Theorem | prarloclemn 7566* | Subtracting two from a positive integer. Lemma for prarloc 7570. (Contributed by Jim Kingdon, 5-Nov-2019.) |
| ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁) | ||
| Theorem | prarloclem5 7567* | A substitution of zero for 𝑦 and 𝑁 minus two for 𝑥. Lemma for prarloc 7570. (Contributed by Jim Kingdon, 4-Nov-2019.) |
| ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑥), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)) | ||
| Theorem | prarloclem 7568* | A special case of Lemma 6.16 from [BauerTaylor], p. 32. Given evenly spaced rational numbers from 𝐴 to 𝐴 +Q (𝑁 ·Q 𝑃) (which are in the lower and upper cuts, respectively, of a real number), there are a pair of numbers, two positions apart in the even spacing, which straddle the cut. (Contributed by Jim Kingdon, 22-Oct-2019.) |
| ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +o 2o), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)) | ||
| Theorem | prarloclemcalc 7569 | Some calculations for prarloc 7570. (Contributed by Jim Kingdon, 26-Oct-2019.) |
| ⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o), 1o〉] ~Q ·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝐵 <Q (𝐴 +Q 𝑃)) | ||
| Theorem | prarloc 7570* |
A Dedekind cut is arithmetically located. Part of Proposition 11.15 of
[BauerTaylor], p. 52, slightly
modified. It states that given a
tolerance 𝑃, there are elements of the lower and
upper cut which
are within that tolerance of each other.
Usually, proofs will be shorter if they use prarloc2 7571 instead. (Contributed by Jim Kingdon, 22-Oct-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝑃 ∈ Q) → ∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑈 𝑏 <Q (𝑎 +Q 𝑃)) | ||
| Theorem | prarloc2 7571* | A Dedekind cut is arithmetically located. This is a variation of prarloc 7570 which only constructs one (named) point and is therefore often easier to work with. It states that given a tolerance 𝑃, there are elements of the lower and upper cut which are exactly that tolerance from each other. (Contributed by Jim Kingdon, 26-Dec-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝑃 ∈ Q) → ∃𝑎 ∈ 𝐿 (𝑎 +Q 𝑃) ∈ 𝑈) | ||
| Theorem | ltrelpr 7572 | Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
| ⊢ <P ⊆ (P × P) | ||
| Theorem | ltdfpr 7573* | More convenient form of df-iltp 7537. (Contributed by Jim Kingdon, 15-Dec-2019.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) | ||
| Theorem | genpdflem 7574* | Simplification of upper or lower cut expression. Lemma for genpdf 7575. (Contributed by Jim Kingdon, 30-Sep-2019.) |
| ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ Q) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝑠 ∈ Q) ⇒ ⊢ (𝜑 → {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))} = {𝑞 ∈ Q ∣ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐵 𝑞 = (𝑟𝐺𝑠)}) | ||
| Theorem | genpdf 7575* | Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1st ‘𝑤) ∧ 𝑠 ∈ (1st ‘𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (2nd ‘𝑤) ∧ 𝑠 ∈ (2nd ‘𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}〉) ⇒ ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑞 ∈ Q ∣ ∃𝑟 ∈ (1st ‘𝑤)∃𝑠 ∈ (1st ‘𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ (2nd ‘𝑤)∃𝑠 ∈ (2nd ‘𝑣)𝑞 = (𝑟𝐺𝑠)}〉) | ||
| Theorem | genipv 7576* | Value of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingon, 3-Oct-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) = 〈{𝑞 ∈ Q ∣ ∃𝑟 ∈ (1st ‘𝐴)∃𝑠 ∈ (1st ‘𝐵)𝑞 = (𝑟𝐺𝑠)}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ (2nd ‘𝐴)∃𝑠 ∈ (2nd ‘𝐵)𝑞 = (𝑟𝐺𝑠)}〉) | ||
| Theorem | genplt2i 7577* | Operating on both sides of two inequalities, when the operation is consistent with <Q. (Contributed by Jim Kingdon, 6-Oct-2019.) |
| ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) ⇒ ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) | ||
| Theorem | genpelxp 7578* | Set containing the result of adding or multiplying positive reals. (Contributed by Jim Kingdon, 5-Dec-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ∈ (𝒫 Q × 𝒫 Q)) | ||
| Theorem | genpelvl 7579* | Membership in lower cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st ‘𝐴)∃ℎ ∈ (1st ‘𝐵)𝐶 = (𝑔𝐺ℎ))) | ||
| Theorem | genpelvu 7580* | Membership in upper cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 15-Oct-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd ‘𝐴)∃ℎ ∈ (2nd ‘𝐵)𝐶 = (𝑔𝐺ℎ))) | ||
| Theorem | genpprecll 7581* | Pre-closure law for general operation on lower cuts. (Contributed by Jim Kingdon, 2-Oct-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶 ∈ (1st ‘𝐴) ∧ 𝐷 ∈ (1st ‘𝐵)) → (𝐶𝐺𝐷) ∈ (1st ‘(𝐴𝐹𝐵)))) | ||
| Theorem | genppreclu 7582* | Pre-closure law for general operation on upper cuts. (Contributed by Jim Kingdon, 7-Nov-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶 ∈ (2nd ‘𝐴) ∧ 𝐷 ∈ (2nd ‘𝐵)) → (𝐶𝐺𝐷) ∈ (2nd ‘(𝐴𝐹𝐵)))) | ||
| Theorem | genipdm 7583* | Domain of general operation on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ dom 𝐹 = (P × P) | ||
| Theorem | genpml 7584* | The lower cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Oct-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∃𝑞 ∈ Q 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))) | ||
| Theorem | genpmu 7585* | The upper cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Dec-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∃𝑞 ∈ Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) | ||
| Theorem | genpcdl 7586* | Downward closure of an operation on positive reals. (Contributed by Jim Kingdon, 14-Oct-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1st ‘𝐵))) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑓 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) | ||
| Theorem | genpcuu 7587* | Upward closure of an operation on positive reals. (Contributed by Jim Kingdon, 8-Nov-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (2nd ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (2nd ‘𝐵))) ∧ 𝑥 ∈ Q) → ((𝑔𝐺ℎ) <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑓 <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))) | ||
| Theorem | genprndl 7588* | The lower cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) & ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (1st ‘𝐵))) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴𝐹𝐵))))) | ||
| Theorem | genprndu 7589* | The upper cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) & ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ (2nd ‘𝐴)) ∧ (𝐵 ∈ P ∧ ℎ ∈ (2nd ‘𝐵))) ∧ 𝑥 ∈ Q) → ((𝑔𝐺ℎ) <Q 𝑥 → 𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))) | ||
| Theorem | genpdisj 7590* | The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))) | ||
| Theorem | genpassl 7591* | Associativity of lower cuts. Lemma for genpassg 7593. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ dom 𝐹 = (P × P) & ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓𝐹𝑔) ∈ P) & ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓𝐺𝑔)𝐺ℎ) = (𝑓𝐺(𝑔𝐺ℎ))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (1st ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1st ‘(𝐴𝐹(𝐵𝐹𝐶)))) | ||
| Theorem | genpassu 7592* | Associativity of upper cuts. Lemma for genpassg 7593. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ dom 𝐹 = (P × P) & ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓𝐹𝑔) ∈ P) & ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓𝐺𝑔)𝐺ℎ) = (𝑓𝐺(𝑔𝐺ℎ))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2nd ‘(𝐴𝐹(𝐵𝐹𝐶)))) | ||
| Theorem | genpassg 7593* | Associativity of an operation on reals. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ dom 𝐹 = (P × P) & ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓𝐹𝑔) ∈ P) & ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓𝐺𝑔)𝐺ℎ) = (𝑓𝐺(𝑔𝐺ℎ))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶))) | ||
| Theorem | addnqprllem 7594 | Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.) |
| ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐺 ∈ 𝐿) ∧ 𝑋 ∈ Q) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q‘𝑆)) ·Q 𝐺) ∈ 𝐿)) | ||
| Theorem | addnqprulem 7595 | Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.) |
| ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐺 ∈ 𝑈) ∧ 𝑋 ∈ Q) → (𝑆 <Q 𝑋 → ((𝑋 ·Q (*Q‘𝑆)) ·Q 𝐺) ∈ 𝑈)) | ||
| Theorem | addnqprl 7596 | Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝐺 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝐻 ∈ (1st ‘𝐵))) ∧ 𝑋 ∈ Q) → (𝑋 <Q (𝐺 +Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴 +P 𝐵)))) | ||
| Theorem | addnqpru 7597 | Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝐺 ∈ (2nd ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝐻 ∈ (2nd ‘𝐵))) ∧ 𝑋 ∈ Q) → ((𝐺 +Q 𝐻) <Q 𝑋 → 𝑋 ∈ (2nd ‘(𝐴 +P 𝐵)))) | ||
| Theorem | addlocprlemlt 7598 | Lemma for addlocpr 7603. The 𝑄 <Q (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → 𝑄 <Q 𝑅) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) & ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) & ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) & ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) & ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) ⇒ ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵)))) | ||
| Theorem | addlocprlemeqgt 7599 | Lemma for addlocpr 7603. This is a step used in both the 𝑄 = (𝐷 +Q 𝐸) and (𝐷 +Q 𝐸) <Q 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → 𝑄 <Q 𝑅) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) & ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) & ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) & ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) & ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) ⇒ ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) | ||
| Theorem | addlocprlemeq 7600 | Lemma for addlocpr 7603. The 𝑄 = (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ P) & ⊢ (𝜑 → 𝐵 ∈ P) & ⊢ (𝜑 → 𝑄 <Q 𝑅) & ⊢ (𝜑 → 𝑃 ∈ Q) & ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) & ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) & ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) & ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) & ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) & ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) & ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) ⇒ ⊢ (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |