HomeHome Intuitionistic Logic Explorer
Theorem List (p. 76 of 144)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7501-7600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaddnqprllem 7501 Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
 
Theoremaddnqprulem 7502 Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
(((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) → (𝑆 <Q 𝑋 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))
 
Theoremaddnqprl 7503 Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 +Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴 +P 𝐵))))
 
Theoremaddnqpru 7504 Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 +Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 +P 𝐵))))
 
Theoremaddlocprlemlt 7505 Lemma for addlocpr 7510. The 𝑄 <Q (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵))))
 
Theoremaddlocprlemeqgt 7506 Lemma for addlocpr 7510. This is a step used in both the 𝑄 = (𝐷 +Q 𝐸) and (𝐷 +Q 𝐸) <Q 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
 
Theoremaddlocprlemeq 7507 Lemma for addlocpr 7510. The 𝑄 = (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → (𝑄 = (𝐷 +Q 𝐸) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
 
Theoremaddlocprlemgt 7508 Lemma for addlocpr 7510. The (𝐷 +Q 𝐸) <Q 𝑄 case. (Contributed by Jim Kingdon, 6-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
 
Theoremaddlocprlem 7509 Lemma for addlocpr 7510. The result, in deduction form. (Contributed by Jim Kingdon, 6-Dec-2019.)
(𝜑𝐴P)    &   (𝜑𝐵P)    &   (𝜑𝑄 <Q 𝑅)    &   (𝜑𝑃Q)    &   (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)    &   (𝜑𝐷 ∈ (1st𝐴))    &   (𝜑𝑈 ∈ (2nd𝐴))    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑𝐸 ∈ (1st𝐵))    &   (𝜑𝑇 ∈ (2nd𝐵))    &   (𝜑𝑇 <Q (𝐸 +Q 𝑃))       (𝜑 → (𝑄 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
 
Theoremaddlocpr 7510* Locatedness of addition on positive reals. Lemma 11.16 in [BauerTaylor], p. 53. The proof in BauerTaylor relies on signed rationals, so we replace it with another proof which applies prarloc 7477 to both 𝐴 and 𝐵, and uses nqtri3or 7370 rather than prloc 7465 to decide whether 𝑞 is too big to be in the lower cut of 𝐴 +P 𝐵 (and deduce that if it is, then 𝑟 must be in the upper cut). What the two proofs have in common is that they take the difference between 𝑞 and 𝑟 to determine how tight a range they need around the real numbers. (Contributed by Jim Kingdon, 5-Dec-2019.)
((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 +P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 +P 𝐵)))))
 
Theoremaddclpr 7511 Closure of addition on positive reals. First statement of Proposition 9-3.5 of [Gleason] p. 123. Combination of Lemma 11.13 and Lemma 11.16 in [BauerTaylor], p. 53. (Contributed by NM, 13-Mar-1996.)
((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
 
Theoremplpvlu 7512* Value of addition on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.)
((𝐴P𝐵P) → (𝐴 +P 𝐵) = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 +Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 +Q 𝑧)}⟩)
 
Theoremmpvlu 7513* Value of multiplication on positive reals. (Contributed by Jim Kingdon, 8-Dec-2019.)
((𝐴P𝐵P) → (𝐴 ·P 𝐵) = ⟨{𝑥Q ∣ ∃𝑦 ∈ (1st𝐴)∃𝑧 ∈ (1st𝐵)𝑥 = (𝑦 ·Q 𝑧)}, {𝑥Q ∣ ∃𝑦 ∈ (2nd𝐴)∃𝑧 ∈ (2nd𝐵)𝑥 = (𝑦 ·Q 𝑧)}⟩)
 
Theoremdmplp 7514 Domain of addition on positive reals. (Contributed by NM, 18-Nov-1995.)
dom +P = (P × P)
 
Theoremdmmp 7515 Domain of multiplication on positive reals. (Contributed by NM, 18-Nov-1995.)
dom ·P = (P × P)
 
Theoremnqprm 7516* A cut produced from a rational is inhabited. Lemma for nqprlu 7521. (Contributed by Jim Kingdon, 8-Dec-2019.)
(𝐴Q → (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
 
Theoremnqprrnd 7517* A cut produced from a rational is rounded. Lemma for nqprlu 7521. (Contributed by Jim Kingdon, 8-Dec-2019.)
(𝐴Q → (∀𝑞Q (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ {𝑥𝑥 <Q 𝐴})) ∧ ∀𝑟Q (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ {𝑥𝐴 <Q 𝑥}))))
 
Theoremnqprdisj 7518* A cut produced from a rational is disjoint. Lemma for nqprlu 7521. (Contributed by Jim Kingdon, 8-Dec-2019.)
(𝐴Q → ∀𝑞Q ¬ (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑞 ∈ {𝑥𝐴 <Q 𝑥}))
 
Theoremnqprloc 7519* A cut produced from a rational is located. Lemma for nqprlu 7521. (Contributed by Jim Kingdon, 8-Dec-2019.)
(𝐴Q → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∨ 𝑟 ∈ {𝑥𝐴 <Q 𝑥})))
 
Theoremnqprxx 7520* The canonical embedding of the rationals into the reals, expressed with the same variable for the lower and upper cuts. (Contributed by Jim Kingdon, 8-Dec-2019.)
(𝐴Q → ⟨{𝑥𝑥 <Q 𝐴}, {𝑥𝐴 <Q 𝑥}⟩ ∈ P)
 
Theoremnqprlu 7521* The canonical embedding of the rationals into the reals. (Contributed by Jim Kingdon, 24-Jun-2020.)
(𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
 
Theoremrecnnpr 7522* The reciprocal of a positive integer, as a positive real. (Contributed by Jim Kingdon, 27-Feb-2021.)
(𝐴N → ⟨{𝑙𝑙 <Q (*Q‘[⟨𝐴, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝐴, 1o⟩] ~Q ) <Q 𝑢}⟩ ∈ P)
 
Theoremltnqex 7523 The class of rationals less than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.)
{𝑥𝑥 <Q 𝐴} ∈ V
 
Theoremgtnqex 7524 The class of rationals greater than a given rational is a set. (Contributed by Jim Kingdon, 13-Dec-2019.)
{𝑥𝐴 <Q 𝑥} ∈ V
 
Theoremnqprl 7525* Comparing a fraction to a real can be done by whether it is an element of the lower cut, or by <P. (Contributed by Jim Kingdon, 8-Jul-2020.)
((𝐴Q𝐵P) → (𝐴 ∈ (1st𝐵) ↔ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵))
 
Theoremnqpru 7526* Comparing a fraction to a real can be done by whether it is an element of the upper cut, or by <P. (Contributed by Jim Kingdon, 29-Nov-2020.)
((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) ↔ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
 
Theoremnnprlu 7527* The canonical embedding of positive integers into the positive reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
(𝐴N → ⟨{𝑙𝑙 <Q [⟨𝐴, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝐴, 1o⟩] ~Q <Q 𝑢}⟩ ∈ P)
 
Theorem1pr 7528 The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
1PP
 
Theorem1prl 7529 The lower cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
(1st ‘1P) = {𝑥𝑥 <Q 1Q}
 
Theorem1pru 7530 The upper cut of the positive real number 'one'. (Contributed by Jim Kingdon, 28-Dec-2019.)
(2nd ‘1P) = {𝑥 ∣ 1Q <Q 𝑥}
 
Theoremaddnqprlemrl 7531* Lemma for addnqpr 7535. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
 
Theoremaddnqprlemru 7532* Lemma for addnqpr 7535. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩))
 
Theoremaddnqprlemfl 7533* Lemma for addnqpr 7535. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → (1st ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) ⊆ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
 
Theoremaddnqprlemfu 7534* Lemma for addnqpr 7535. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → (2nd ‘⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩) ⊆ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
 
Theoremaddnqpr 7535* Addition of fractions embedded into positive reals. One can either add the fractions as fractions, or embed them into positive reals and add them as positive reals, and get the same result. (Contributed by Jim Kingdon, 19-Aug-2020.)
((𝐴Q𝐵Q) → ⟨{𝑙𝑙 <Q (𝐴 +Q 𝐵)}, {𝑢 ∣ (𝐴 +Q 𝐵) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))
 
Theoremaddnqpr1 7536* Addition of one to a fraction embedded into a positive real. One can either add the fraction one to the fraction, or the positive real one to the positive real, and get the same result. Special case of addnqpr 7535. (Contributed by Jim Kingdon, 26-Apr-2020.)
(𝐴Q → ⟨{𝑙𝑙 <Q (𝐴 +Q 1Q)}, {𝑢 ∣ (𝐴 +Q 1Q) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ +P 1P))
 
Theoremappdivnq 7537* Approximate division for positive rationals. Proposition 12.7 of [BauerTaylor], p. 55 (a special case where 𝐴 and 𝐵 are positive, as well as 𝐶). Our proof is simpler than the one in BauerTaylor because we have reciprocals. (Contributed by Jim Kingdon, 8-Dec-2019.)
((𝐴 <Q 𝐵𝐶Q) → ∃𝑚Q (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵))
 
Theoremappdiv0nq 7538* Approximate division for positive rationals. This can be thought of as a variation of appdivnq 7537 in which 𝐴 is zero, although it can be stated and proved in terms of positive rationals alone, without zero as such. (Contributed by Jim Kingdon, 9-Dec-2019.)
((𝐵Q𝐶Q) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
 
Theoremprmuloclemcalc 7539 Calculations for prmuloc 7540. (Contributed by Jim Kingdon, 9-Dec-2019.)
(𝜑𝑅 <Q 𝑈)    &   (𝜑𝑈 <Q (𝐷 +Q 𝑃))    &   (𝜑 → (𝐴 +Q 𝑋) = 𝐵)    &   (𝜑 → (𝑃 ·Q 𝐵) <Q (𝑅 ·Q 𝑋))    &   (𝜑𝐴Q)    &   (𝜑𝐵Q)    &   (𝜑𝐷Q)    &   (𝜑𝑃Q)    &   (𝜑𝑋Q)       (𝜑 → (𝑈 ·Q 𝐴) <Q (𝐷 ·Q 𝐵))
 
Theoremprmuloc 7540* Positive reals are multiplicatively located. Lemma 12.8 of [BauerTaylor], p. 56. (Contributed by Jim Kingdon, 8-Dec-2019.)
((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
 
Theoremprmuloc2 7541* Positive reals are multiplicatively located. This is a variation of prmuloc 7540 which only constructs one (named) point and is therefore often easier to work with. It states that given a ratio 𝐵, there are elements of the lower and upper cut which have exactly that ratio between them. (Contributed by Jim Kingdon, 28-Dec-2019.)
((⟨𝐿, 𝑈⟩ ∈ P ∧ 1Q <Q 𝐵) → ∃𝑥𝐿 (𝑥 ·Q 𝐵) ∈ 𝑈)
 
Theoremmulnqprl 7542 Lemma to prove downward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 ·Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴 ·P 𝐵))))
 
Theoremmulnqpru 7543 Lemma to prove upward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 ·P 𝐵))))
 
Theoremmullocprlem 7544 Calculations for mullocpr 7545. (Contributed by Jim Kingdon, 10-Dec-2019.)
(𝜑 → (𝐴P𝐵P))    &   (𝜑 → (𝑈 ·Q 𝑄) <Q (𝐸 ·Q (𝐷 ·Q 𝑈)))    &   (𝜑 → (𝐸 ·Q (𝐷 ·Q 𝑈)) <Q (𝑇 ·Q (𝐷 ·Q 𝑈)))    &   (𝜑 → (𝑇 ·Q (𝐷 ·Q 𝑈)) <Q (𝐷 ·Q 𝑅))    &   (𝜑 → (𝑄Q𝑅Q))    &   (𝜑 → (𝐷Q𝑈Q))    &   (𝜑 → (𝐷 ∈ (1st𝐴) ∧ 𝑈 ∈ (2nd𝐴)))    &   (𝜑 → (𝐸Q𝑇Q))       (𝜑 → (𝑄 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑅 ∈ (2nd ‘(𝐴 ·P 𝐵))))
 
Theoremmullocpr 7545* Locatedness of multiplication on positive reals. Lemma 12.9 in [BauerTaylor], p. 56 (but where both 𝐴 and 𝐵 are positive, not just 𝐴). (Contributed by Jim Kingdon, 8-Dec-2019.)
((𝐴P𝐵P) → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘(𝐴 ·P 𝐵)) ∨ 𝑟 ∈ (2nd ‘(𝐴 ·P 𝐵)))))
 
Theoremmulclpr 7546 Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.)
((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
 
Theoremmulnqprlemrl 7547* Lemma for mulnqpr 7551. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
 
Theoremmulnqprlemru 7548* Lemma for mulnqpr 7551. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
 
Theoremmulnqprlemfl 7549* Lemma for mulnqpr 7551. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ⊆ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
 
Theoremmulnqprlemfu 7550* Lemma for mulnqpr 7551. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ⊆ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
 
Theoremmulnqpr 7551* Multiplication of fractions embedded into positive reals. One can either multiply the fractions as fractions, or embed them into positive reals and multiply them as positive reals, and get the same result. (Contributed by Jim Kingdon, 18-Jul-2021.)
((𝐴Q𝐵Q) → ⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))
 
Theoremaddcomprg 7552 Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
((𝐴P𝐵P) → (𝐴 +P 𝐵) = (𝐵 +P 𝐴))
 
Theoremaddassprg 7553 Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶)))
 
Theoremmulcomprg 7554 Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
((𝐴P𝐵P) → (𝐴 ·P 𝐵) = (𝐵 ·P 𝐴))
 
Theoremmulassprg 7555 Multiplication of positive reals is associative. Proposition 9-3.7(i) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
((𝐴P𝐵P𝐶P) → ((𝐴 ·P 𝐵) ·P 𝐶) = (𝐴 ·P (𝐵 ·P 𝐶)))
 
Theoremdistrlem1prl 7556 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
((𝐴P𝐵P𝐶P) → (1st ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
 
Theoremdistrlem1pru 7557 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
((𝐴P𝐵P𝐶P) → (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))) ⊆ (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
 
Theoremdistrlem4prl 7558* Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
(((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (1st𝐴) ∧ 𝑦 ∈ (1st𝐵)) ∧ (𝑓 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
 
Theoremdistrlem4pru 7559* Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
(((𝐴P𝐵P𝐶P) ∧ ((𝑥 ∈ (2nd𝐴) ∧ 𝑦 ∈ (2nd𝐵)) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐶)))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
 
Theoremdistrlem5prl 7560 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
((𝐴P𝐵P𝐶P) → (1st ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (1st ‘(𝐴 ·P (𝐵 +P 𝐶))))
 
Theoremdistrlem5pru 7561 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))) ⊆ (2nd ‘(𝐴 ·P (𝐵 +P 𝐶))))
 
Theoremdistrprg 7562 Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 12-Dec-2019.)
((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) = ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
 
Theoremltprordil 7563 If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.)
(𝐴<P 𝐵 → (1st𝐴) ⊆ (1st𝐵))
 
Theorem1idprl 7564 Lemma for 1idpr 7566. (Contributed by Jim Kingdon, 13-Dec-2019.)
(𝐴P → (1st ‘(𝐴 ·P 1P)) = (1st𝐴))
 
Theorem1idpru 7565 Lemma for 1idpr 7566. (Contributed by Jim Kingdon, 13-Dec-2019.)
(𝐴P → (2nd ‘(𝐴 ·P 1P)) = (2nd𝐴))
 
Theorem1idpr 7566 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of [Gleason] p. 124. (Contributed by NM, 2-Apr-1996.)
(𝐴P → (𝐴 ·P 1P) = 𝐴)
 
Theoremltnqpr 7567* We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 19-Jun-2021.)
((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))
 
Theoremltnqpri 7568* We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 8-Jan-2021.)
(𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)
 
Theoremltpopr 7569 Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 7570. (Contributed by Jim Kingdon, 15-Dec-2019.)
<P Po P
 
Theoremltsopr 7570 Positive real 'less than' is a weak linear order (in the sense of df-iso 4291). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.)
<P Or P
 
Theoremltaddpr 7571 The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))
 
Theoremltexprlemell 7572* Element in lower cut of the constructed difference. Lemma for ltexpri 7587. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
 
Theoremltexprlemelu 7573* Element in upper cut of the constructed difference. Lemma for ltexpri 7587. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
 
Theoremltexprlemm 7574* Our constructed difference is inhabited. Lemma for ltexpri 7587. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (∃𝑞Q 𝑞 ∈ (1st𝐶) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐶)))
 
Theoremltexprlemopl 7575* The lower cut of our constructed difference is open. Lemma for ltexpri 7587. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑞Q𝑞 ∈ (1st𝐶)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
 
Theoremltexprlemlol 7576* The lower cut of our constructed difference is lower. Lemma for ltexpri 7587. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) → 𝑞 ∈ (1st𝐶)))
 
Theoremltexprlemopu 7577* The upper cut of our constructed difference is open. Lemma for ltexpri 7587. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))
 
Theoremltexprlemupu 7578* The upper cut of our constructed difference is upper. Lemma for ltexpri 7587. (Contributed by Jim Kingdon, 21-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       ((𝐴<P 𝐵𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)) → 𝑟 ∈ (2nd𝐶)))
 
Theoremltexprlemrnd 7579* Our constructed difference is rounded. Lemma for ltexpri 7587. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (∀𝑞Q (𝑞 ∈ (1st𝐶) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶))) ∧ ∀𝑟Q (𝑟 ∈ (2nd𝐶) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd𝐶)))))
 
Theoremltexprlemdisj 7580* Our constructed difference is disjoint. Lemma for ltexpri 7587. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)))
 
Theoremltexprlemloc 7581* Our constructed difference is located. Lemma for ltexpri 7587. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐶) ∨ 𝑟 ∈ (2nd𝐶))))
 
Theoremltexprlempr 7582* Our constructed difference is a positive real. Lemma for ltexpri 7587. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵𝐶P)
 
Theoremltexprlemfl 7583* Lemma for ltexpri 7587. One direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (1st ‘(𝐴 +P 𝐶)) ⊆ (1st𝐵))
 
Theoremltexprlemrl 7584* Lemma for ltexpri 7587. Reverse direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (1st𝐵) ⊆ (1st ‘(𝐴 +P 𝐶)))
 
Theoremltexprlemfu 7585* Lemma for ltexpri 7587. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (2nd ‘(𝐴 +P 𝐶)) ⊆ (2nd𝐵))
 
Theoremltexprlemru 7586* Lemma for ltexpri 7587. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩       (𝐴<P 𝐵 → (2nd𝐵) ⊆ (2nd ‘(𝐴 +P 𝐶)))
 
Theoremltexpri 7587* Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
(𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
 
Theoremaddcanprleml 7588 Lemma for addcanprg 7590. (Contributed by Jim Kingdon, 25-Dec-2019.)
(((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st𝐵) ⊆ (1st𝐶))
 
Theoremaddcanprlemu 7589 Lemma for addcanprg 7590. (Contributed by Jim Kingdon, 25-Dec-2019.)
(((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))
 
Theoremaddcanprg 7590 Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.)
((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶))
 
Theoremlteupri 7591* The difference from ltexpri 7587 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.)
(𝐴<P 𝐵 → ∃!𝑥P (𝐴 +P 𝑥) = 𝐵)
 
Theoremltaprlem 7592 Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.)
(𝐶P → (𝐴<P 𝐵 → (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
 
Theoremltaprg 7593 Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by Jim Kingdon, 26-Dec-2019.)
((𝐴P𝐵P𝐶P) → (𝐴<P 𝐵 ↔ (𝐶 +P 𝐴)<P (𝐶 +P 𝐵)))
 
Theoremprplnqu 7594* Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.)
(𝜑𝑋P)    &   (𝜑𝑄Q)    &   (𝜑𝐴 ∈ (2nd ‘(𝑋 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))       (𝜑 → ∃𝑦 ∈ (2nd𝑋)(𝑦 +Q 𝑄) = 𝐴)
 
Theoremaddextpr 7595 Strong extensionality of addition (ordering version). This is similar to addext 8541 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
(((𝐴P𝐵P) ∧ (𝐶P𝐷P)) → ((𝐴 +P 𝐵)<P (𝐶 +P 𝐷) → (𝐴<P 𝐶𝐵<P 𝐷)))
 
Theoremrecexprlemell 7596* Membership in the lower cut of 𝐵. Lemma for recexpr 7612. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐶 ∈ (1st𝐵) ↔ ∃𝑦(𝐶 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
 
Theoremrecexprlemelu 7597* Membership in the upper cut of 𝐵. Lemma for recexpr 7612. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐶 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝐶 ∧ (*Q𝑦) ∈ (1st𝐴)))
 
Theoremrecexprlemm 7598* 𝐵 is inhabited. Lemma for recexpr 7612. (Contributed by Jim Kingdon, 27-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       (𝐴P → (∃𝑞Q 𝑞 ∈ (1st𝐵) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐵)))
 
Theoremrecexprlemopl 7599* The lower cut of 𝐵 is open. Lemma for recexpr 7612. (Contributed by Jim Kingdon, 28-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       ((𝐴P𝑞Q𝑞 ∈ (1st𝐵)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)))
 
Theoremrecexprlemlol 7600* The lower cut of 𝐵 is lower. Lemma for recexpr 7612. (Contributed by Jim Kingdon, 28-Dec-2019.)
𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩       ((𝐴P𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐵)) → 𝑞 ∈ (1st𝐵)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14399
  Copyright terms: Public domain < Previous  Next >