HomeHome Intuitionistic Logic Explorer
Theorem List (p. 76 of 114)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7501-7600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaxapti 7501 Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-apti 7404 with ordering on the extended reals.) (Contributed by Jim Kingdon, 29-Jan-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
 
Theoremaxmulgt0 7502 The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-mulgt0 7406 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
 
3.2.4  Ordering on reals
 
Theoremlttr 7503 Alias for axlttrn 7499, for naming consistency with lttri 7533. New proofs should generally use this instead of ax-pre-lttrn 7403. (Contributed by NM, 10-Mar-2008.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Theoremmulgt0 7504 The product of two positive numbers is positive. (Contributed by NM, 10-Mar-2008.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 · 𝐵))
 
Theoremlenlt 7505 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
 
Theoremltnr 7506 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
(𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
 
Theoremltso 7507 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
< Or ℝ
 
Theoremgtso 7508 'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.)
< Or ℝ
 
Theoremlttri3 7509 Tightness of real apartness. (Contributed by NM, 5-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
 
Theoremletri3 7510 Tightness of real apartness. (Contributed by NM, 14-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremltleletr 7511 Transitive law, weaker form of (𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶. (Contributed by AV, 14-Oct-2018.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremletr 7512 Transitive law. (Contributed by NM, 12-Nov-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
 
Theoremleid 7513 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.)
(𝐴 ∈ ℝ → 𝐴𝐴)
 
Theoremltne 7514 'Less than' implies not equal. See also ltap 8049 which is the same but for apartness. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵𝐴)
 
Theoremltnsym 7515 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
 
Theoremltle 7516 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
 
Theoremlelttr 7517 Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 23-May-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
 
Theoremltletr 7518 Transitive law. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 25-Aug-1999.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
 
Theoremltnsym2 7519 'Less than' is antisymmetric and irreflexive. (Contributed by NM, 13-Aug-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (𝐴 < 𝐵𝐵 < 𝐴))
 
Theoremeqle 7520 Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.)
((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
 
Theoremltnri 7521 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
𝐴 ∈ ℝ        ¬ 𝐴 < 𝐴
 
Theoremeqlei 7522 Equality implies 'less than or equal to'. (Contributed by NM, 23-May-1999.) (Revised by Alexander van der Vekens, 20-Mar-2018.)
𝐴 ∈ ℝ       (𝐴 = 𝐵𝐴𝐵)
 
Theoremeqlei2 7523 Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018.)
𝐴 ∈ ℝ       (𝐵 = 𝐴𝐵𝐴)
 
Theoremgtneii 7524 'Less than' implies not equal. See also gtapii 8050 which is the same for apartness. (Contributed by Mario Carneiro, 30-Sep-2013.)
𝐴 ∈ ℝ    &   𝐴 < 𝐵       𝐵𝐴
 
Theoremltneii 7525 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015.)
𝐴 ∈ ℝ    &   𝐴 < 𝐵       𝐴𝐵
 
Theoremlttri3i 7526 Tightness of real apartness. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))
 
Theoremletri3i 7527 Tightness of real apartness. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
 
Theoremltnsymi 7528 'Less than' is not symmetric. (Contributed by NM, 6-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)
 
Theoremlenlti 7529 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 24-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴)
 
Theoremltlei 7530 'Less than' implies 'less than or equal to'. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵𝐴𝐵)
 
Theoremltleii 7531 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐴 < 𝐵       𝐴𝐵
 
Theoremltnei 7532 'Less than' implies not equal. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵𝐵𝐴)
 
Theoremlttri 7533 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)
 
Theoremlelttri 7534 'Less than or equal to', 'less than' transitive law. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶)
 
Theoremltletri 7535 'Less than', 'less than or equal to' transitive law. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶)
 
Theoremletri 7536 'Less than or equal to' is transitive. (Contributed by NM, 14-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremle2tri3i 7537 Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐶 ∈ ℝ       ((𝐴𝐵𝐵𝐶𝐶𝐴) ↔ (𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐴))
 
Theoremmulgt0i 7538 The product of two positive numbers is positive. (Contributed by NM, 16-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))
 
Theoremmulgt0ii 7539 The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   0 < 𝐴    &   0 < 𝐵       0 < (𝐴 · 𝐵)
 
Theoremltnrd 7540 'Less than' is irreflexive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → ¬ 𝐴 < 𝐴)
 
Theoremgtned 7541 'Less than' implies not equal. See also gtapd 8053 which is the same but for apartness. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐵𝐴)
 
Theoremltned 7542 'Greater than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐴𝐵)
 
Theoremlttri3d 7543 Tightness of real apartness. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)))
 
Theoremletri3d 7544 Tightness of real apartness. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremlenltd 7545 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
 
Theoremltled 7546 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐴𝐵)
 
Theoremltnsymd 7547 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → ¬ 𝐵 < 𝐴)
 
Theoremnltled 7548 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → ¬ 𝐵 < 𝐴)       (𝜑𝐴𝐵)
 
Theoremlensymd 7549 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → ¬ 𝐵 < 𝐴)
 
Theoremmulgt0d 7550 The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)    &   (𝜑 → 0 < 𝐵)       (𝜑 → 0 < (𝐴 · 𝐵))
 
Theoremletrd 7551 Transitive law deduction for 'less than or equal to'. (Contributed by NM, 20-May-2005.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremlelttrd 7552 Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 < 𝐶)       (𝜑𝐴 < 𝐶)
 
Theoremlttrd 7553 Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)    &   (𝜑𝐵 < 𝐶)       (𝜑𝐴 < 𝐶)
 
Theorem0lt1 7554 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.)
0 < 1
 
3.2.5  Initial properties of the complex numbers
 
Theoremmul12 7555 Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
 
Theoremmul32 7556 Commutative/associative law. (Contributed by NM, 8-Oct-1999.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵))
 
Theoremmul31 7557 Commutative/associative law. (Contributed by Scott Fenton, 3-Jan-2013.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴))
 
Theoremmul4 7558 Rearrangement of 4 factors. (Contributed by NM, 8-Oct-1999.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
 
Theoremmuladd11 7559 A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))))
 
Theorem1p1times 7560 Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴))
 
Theorempeano2cn 7561 A theorem for complex numbers analogous the second Peano postulate peano2 4383. (Contributed by NM, 17-Aug-2005.)
(𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ)
 
Theorempeano2re 7562 A theorem for reals analogous the second Peano postulate peano2 4383. (Contributed by NM, 5-Jul-2005.)
(𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
 
Theoremaddcom 7563 Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremaddid1 7564 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
(𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
 
Theoremaddid2 7565 0 is a left identity for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
(𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
 
Theoremreaddcan 7566 Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵))
 
Theorem00id 7567 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.)
(0 + 0) = 0
 
Theoremaddid1i 7568 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
𝐴 ∈ ℂ       (𝐴 + 0) = 𝐴
 
Theoremaddid2i 7569 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.)
𝐴 ∈ ℂ       (0 + 𝐴) = 𝐴
 
Theoremaddcomi 7570 Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐴 + 𝐵) = (𝐵 + 𝐴)
 
Theoremaddcomli 7571 Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   (𝐴 + 𝐵) = 𝐶       (𝐵 + 𝐴) = 𝐶
 
Theoremmul12i 7572 Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))
 
Theoremmul32i 7573 Commutative/associative law that swaps the last two factors in a triple product. (Contributed by NM, 11-May-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)
 
Theoremmul4i 7574 Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ       ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))
 
Theoremaddid1d 7575 0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (𝐴 + 0) = 𝐴)
 
Theoremaddid2d 7576 0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (0 + 𝐴) = 𝐴)
 
Theoremaddcomd 7577 Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremmul12d 7578 Commutative/associative law that swaps the first two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
 
Theoremmul32d 7579 Commutative/associative law that swaps the last two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵))
 
Theoremmul31d 7580 Commutative/associative law. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴))
 
Theoremmul4d 7581 Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
 
Theoremmuladd11r 7582 A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))
 
Theoremcomraddd 7583 Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.)
(𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐴 = (𝐵 + 𝐶))       (𝜑𝐴 = (𝐶 + 𝐵))
 
3.3  Real and complex numbers - basic operations
 
3.3.1  Addition
 
Theoremadd12 7584 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 11-May-2004.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)))
 
Theoremadd32 7585 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 13-Nov-1999.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
 
Theoremadd32r 7586 Commutative/associative law that swaps the last two terms in a triple sum, rearranging the parentheses. (Contributed by Paul Chapman, 18-May-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = ((𝐴 + 𝐶) + 𝐵))
 
Theoremadd4 7587 Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
 
Theoremadd42 7588 Rearrangement of 4 terms in a sum. (Contributed by NM, 12-May-2005.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)))
 
Theoremadd12i 7589 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 21-Jan-1997.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))
 
Theoremadd32i 7590 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 21-Jan-1997.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)
 
Theoremadd4i 7591 Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ       ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))
 
Theoremadd42i 7592 Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℂ       ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))
 
Theoremadd12d 7593 Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)))
 
Theoremadd32d 7594 Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
 
Theoremadd4d 7595 Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
 
Theoremadd42d 7596 Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)       (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)))
 
3.3.2  Subtraction
 
Syntaxcmin 7597 Extend class notation to include subtraction.
class
 
Syntaxcneg 7598 Extend class notation to include unary minus. The symbol - is not a class by itself but part of a compound class definition. We do this rather than making it a formal function since it is so commonly used. Note: We use different symbols for unary minus (-) and subtraction cmin 7597 () to prevent syntax ambiguity. For example, looking at the syntax definition co 5613, if we used the same symbol then "( − 𝐴𝐵) " could mean either "𝐴 " minus "𝐵", or it could represent the (meaningless) operation of classes " " and "𝐵 " connected with "operation" "𝐴". On the other hand, "(-𝐴𝐵) " is unambiguous.
class -𝐴
 
Definitiondf-sub 7599* Define subtraction. Theorem subval 7618 shows its value (and describes how this definition works), theorem subaddi 7713 relates it to addition, and theorems subcli 7702 and resubcli 7689 prove its closure laws. (Contributed by NM, 26-Nov-1994.)
− = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
 
Definitiondf-neg 7600 Define the negative of a number (unary minus). We use different symbols for unary minus (-) and subtraction () to prevent syntax ambiguity. See cneg 7598 for a discussion of this. (Contributed by NM, 10-Feb-1995.)
-𝐴 = (0 − 𝐴)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11370
  Copyright terms: Public domain < Previous  Next >