| Intuitionistic Logic Explorer Theorem List (p. 76 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ltbtwnnqq 7501* | There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by Jim Kingdon, 24-Sep-2019.) |
| ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) | ||
| Theorem | ltbtwnnq 7502* | There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) | ||
| Theorem | archnqq 7503* | For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Jim Kingdon, 1-Dec-2019.) |
| ⊢ (𝐴 ∈ Q → ∃𝑥 ∈ N 𝐴 <Q [〈𝑥, 1o〉] ~Q ) | ||
| Theorem | prarloclemarch 7504* | A version of the Archimedean property. This variation is "stronger" than archnqq 7503 in the sense that we provide an integer which is larger than a given rational 𝐴 even after being multiplied by a second rational 𝐵. (Contributed by Jim Kingdon, 30-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ∃𝑥 ∈ N 𝐴 <Q ([〈𝑥, 1o〉] ~Q ·Q 𝐵)) | ||
| Theorem | prarloclemarch2 7505* | Like prarloclemarch 7504 but the integer must be at least two, and there is also 𝐵 added to the right hand side. These details follow straightforwardly but are chosen to be helpful in the proof of prarloc 7589. (Contributed by Jim Kingdon, 25-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐶 ∈ Q) → ∃𝑥 ∈ N (1o <N 𝑥 ∧ 𝐴 <Q (𝐵 +Q ([〈𝑥, 1o〉] ~Q ·Q 𝐶)))) | ||
| Theorem | ltrnqg 7506 | Ordering property of reciprocal for positive fractions. For a simplified version of the forward implication, see ltrnqi 7507. (Contributed by Jim Kingdon, 29-Dec-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ (*Q‘𝐵) <Q (*Q‘𝐴))) | ||
| Theorem | ltrnqi 7507 | Ordering property of reciprocal for positive fractions. For the converse, see ltrnqg 7506. (Contributed by Jim Kingdon, 24-Sep-2019.) |
| ⊢ (𝐴 <Q 𝐵 → (*Q‘𝐵) <Q (*Q‘𝐴)) | ||
| Theorem | nnnq 7508 | The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ Q) | ||
| Theorem | ltnnnq 7509 | Ordering of positive integers via <N or <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ [〈𝐴, 1o〉] ~Q <Q [〈𝐵, 1o〉] ~Q )) | ||
| Definition | df-enq0 7510* | Define equivalence relation for nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.) |
| ⊢ ~Q0 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} | ||
| Definition | df-nq0 7511 | Define class of nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.) |
| ⊢ Q0 = ((ω × N) / ~Q0 ) | ||
| Definition | df-0nq0 7512 | Define nonnegative fraction constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 5-Nov-2019.) |
| ⊢ 0Q0 = [〈∅, 1o〉] ~Q0 | ||
| Definition | df-plq0 7513* | Define addition on nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.) |
| ⊢ +Q0 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q0 ∧ 𝑦 ∈ Q0) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)〉] ~Q0 ))} | ||
| Definition | df-mq0 7514* | Define multiplication on nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.) |
| ⊢ ·Q0 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q0 ∧ 𝑦 ∈ Q0) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)〉] ~Q0 ))} | ||
| Theorem | dfmq0qs 7515* | Multiplication on nonnegative fractions. This definition is similar to df-mq0 7514 but expands Q0. (Contributed by Jim Kingdon, 22-Nov-2019.) |
| ⊢ ·Q0 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)〉] ~Q0 ))} | ||
| Theorem | dfplq0qs 7516* | Addition on nonnegative fractions. This definition is similar to df-plq0 7513 but expands Q0. (Contributed by Jim Kingdon, 24-Nov-2019.) |
| ⊢ +Q0 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)〉] ~Q0 ))} | ||
| Theorem | enq0enq 7517 | Equivalence on positive fractions in terms of equivalence on nonnegative fractions. (Contributed by Jim Kingdon, 12-Nov-2019.) |
| ⊢ ~Q = ( ~Q0 ∩ ((N × N) × (N × N))) | ||
| Theorem | enq0sym 7518 | The equivalence relation for nonnegative fractions is symmetric. Lemma for enq0er 7521. (Contributed by Jim Kingdon, 14-Nov-2019.) |
| ⊢ (𝑓 ~Q0 𝑔 → 𝑔 ~Q0 𝑓) | ||
| Theorem | enq0ref 7519 | The equivalence relation for nonnegative fractions is reflexive. Lemma for enq0er 7521. (Contributed by Jim Kingdon, 14-Nov-2019.) |
| ⊢ (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓) | ||
| Theorem | enq0tr 7520 | The equivalence relation for nonnegative fractions is transitive. Lemma for enq0er 7521. (Contributed by Jim Kingdon, 14-Nov-2019.) |
| ⊢ ((𝑓 ~Q0 𝑔 ∧ 𝑔 ~Q0 ℎ) → 𝑓 ~Q0 ℎ) | ||
| Theorem | enq0er 7521 | The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.) |
| ⊢ ~Q0 Er (ω × N) | ||
| Theorem | enq0breq 7522 | Equivalence relation for nonnegative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ~Q0 〈𝐶, 𝐷〉 ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶))) | ||
| Theorem | enq0eceq 7523 | Equivalence class equality of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 24-Nov-2019.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) → ([〈𝐴, 𝐵〉] ~Q0 = [〈𝐶, 𝐷〉] ~Q0 ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶))) | ||
| Theorem | nqnq0pi 7524 | A nonnegative fraction is a positive fraction if its numerator and denominator are positive integers. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → [〈𝐴, 𝐵〉] ~Q0 = [〈𝐴, 𝐵〉] ~Q ) | ||
| Theorem | enq0ex 7525 | The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| ⊢ ~Q0 ∈ V | ||
| Theorem | nq0ex 7526 | The class of positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| ⊢ Q0 ∈ V | ||
| Theorem | nqnq0 7527 | A positive fraction is a nonnegative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| ⊢ Q ⊆ Q0 | ||
| Theorem | nq0nn 7528* | Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.) |
| ⊢ (𝐴 ∈ Q0 → ∃𝑤∃𝑣((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ 𝐴 = [〈𝑤, 𝑣〉] ~Q0 )) | ||
| Theorem | addcmpblnq0 7529 | Lemma showing compatibility of addition on nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.) |
| ⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) ∧ ((𝐹 ∈ ω ∧ 𝐺 ∈ N) ∧ (𝑅 ∈ ω ∧ 𝑆 ∈ N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → 〈((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)), (𝐵 ·o 𝐺)〉 ~Q0 〈((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)), (𝐷 ·o 𝑆)〉)) | ||
| Theorem | mulcmpblnq0 7530 | Lemma showing compatibility of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.) |
| ⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) ∧ ((𝐹 ∈ ω ∧ 𝐺 ∈ N) ∧ (𝑅 ∈ ω ∧ 𝑆 ∈ N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → 〈(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)〉 ~Q0 〈(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)〉)) | ||
| Theorem | mulcanenq0ec 7531 | Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ N) → [〈(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)〉] ~Q0 = [〈𝐵, 𝐶〉] ~Q0 ) | ||
| Theorem | nnnq0lem1 7532* | Decomposing nonnegative fractions into natural numbers. Lemma for addnnnq0 7535 and mulnnnq0 7536. (Contributed by Jim Kingdon, 23-Nov-2019.) |
| ⊢ (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧ 𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ((((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ (𝑠 ∈ ω ∧ 𝑓 ∈ N)) ∧ ((𝑢 ∈ ω ∧ 𝑡 ∈ N) ∧ (𝑔 ∈ ω ∧ ℎ ∈ N))) ∧ ((𝑤 ·o 𝑓) = (𝑣 ·o 𝑠) ∧ (𝑢 ·o ℎ) = (𝑡 ·o 𝑔)))) | ||
| Theorem | addnq0mo 7533* | There is at most one result from adding nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.) |
| ⊢ ((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧ 𝑧 = [〈((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)〉] ~Q0 )) | ||
| Theorem | mulnq0mo 7534* | There is at most one result from multiplying nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.) |
| ⊢ ((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧ 𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)〉] ~Q0 )) | ||
| Theorem | addnnnq0 7535 | Addition of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) → ([〈𝐴, 𝐵〉] ~Q0 +Q0 [〈𝐶, 𝐷〉] ~Q0 ) = [〈((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)〉] ~Q0 ) | ||
| Theorem | mulnnnq0 7536 | Multiplication of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 19-Nov-2019.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) → ([〈𝐴, 𝐵〉] ~Q0 ·Q0 [〈𝐶, 𝐷〉] ~Q0 ) = [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 ) | ||
| Theorem | addclnq0 7537 | Closure of addition on nonnegative fractions. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 +Q0 𝐵) ∈ Q0) | ||
| Theorem | mulclnq0 7538 | Closure of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ Q0) | ||
| Theorem | nqpnq0nq 7539 | A positive fraction plus a nonnegative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q0) → (𝐴 +Q0 𝐵) ∈ Q) | ||
| Theorem | nqnq0a 7540 | Addition of positive fractions is equal with +Q or +Q0. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵)) | ||
| Theorem | nqnq0m 7541 | Multiplication of positive fractions is equal with ·Q or ·Q0. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵)) | ||
| Theorem | nq0m0r 7542 | Multiplication with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.) |
| ⊢ (𝐴 ∈ Q0 → (0Q0 ·Q0 𝐴) = 0Q0) | ||
| Theorem | nq0a0 7543 | Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.) |
| ⊢ (𝐴 ∈ Q0 → (𝐴 +Q0 0Q0) = 𝐴) | ||
| Theorem | nnanq0 7544 | Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.) |
| ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 = ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 )) | ||
| Theorem | distrnq0 7545 | Multiplication of nonnegative fractions is distributive. (Contributed by Jim Kingdon, 27-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶))) | ||
| Theorem | mulcomnq0 7546 | Multiplication of nonnegative fractions is commutative. (Contributed by Jim Kingdon, 27-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴)) | ||
| Theorem | addassnq0lemcl 7547 | A natural number closure law. Lemma for addassnq0 7548. (Contributed by Jim Kingdon, 3-Dec-2019.) |
| ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → (((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω ∧ (𝐽 ·o 𝐿) ∈ N)) | ||
| Theorem | addassnq0 7548 | Addition of nonnegative fractions is associative. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶))) | ||
| Theorem | distnq0r 7549 | Multiplication of nonnegative fractions is distributive. Version of distrnq0 7545 with the multiplications commuted. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴))) | ||
| Theorem | addpinq1 7550 | Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| ⊢ (𝐴 ∈ N → [〈(𝐴 +N 1o), 1o〉] ~Q = ([〈𝐴, 1o〉] ~Q +Q 1Q)) | ||
| Theorem | nq02m 7551 | Multiply a nonnegative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ (𝐴 ∈ Q0 → ([〈2o, 1o〉] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴)) | ||
| Definition | df-inp 7552* |
Define the set of positive reals. A "Dedekind cut" is a partition of
the positive rational numbers into two classes such that all the numbers
of one class are less than all the numbers of the other.
Here we follow the definition of a Dedekind cut from Definition 11.2.1 of [HoTT], p. (varies) with the one exception that we define it over positive rational numbers rather than all rational numbers. A Dedekind cut is an ordered pair of a lower set 𝑙 and an upper set 𝑢 which is inhabited (∃𝑞 ∈ Q𝑞 ∈ 𝑙 ∧ ∃𝑟 ∈ Q𝑟 ∈ 𝑢), rounded (∀𝑞 ∈ Q(𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q(𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) and likewise for 𝑢), disjoint (∀𝑞 ∈ Q¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢)) and located (∀𝑞 ∈ Q∀𝑟 ∈ Q(𝑞 <Q 𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))). See HoTT for more discussion of those terms and different ways of defining Dedekind cuts. (Note: This is a "temporary" definition used in the construction of complex numbers, and is intended to be used only by the construction.) (Contributed by Jim Kingdon, 25-Sep-2019.) |
| ⊢ P = {〈𝑙, 𝑢〉 ∣ (((𝑙 ⊆ Q ∧ 𝑢 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))))} | ||
| Definition | df-i1p 7553* | Define the positive real constant 1. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by Jim Kingdon, 25-Sep-2019.) |
| ⊢ 1P = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 | ||
| Definition | df-iplp 7554* |
Define addition on positive reals. From Section 11.2.1 of [HoTT], p.
(varies). We write this definition to closely resemble the definition
in HoTT although some of the conditions are redundant (for example,
𝑟
∈ (1st ‘𝑥) implies 𝑟 ∈ Q)
and can be simplified as
shown at genpdf 7594.
This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.) |
| ⊢ +P = (𝑥 ∈ P, 𝑦 ∈ P ↦ 〈{𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1st ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (2nd ‘𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}〉) | ||
| Definition | df-imp 7555* |
Define multiplication on positive reals. Here we use a simple
definition which is similar to df-iplp 7554 or the definition of
multiplication on positive reals in Metamath Proof Explorer. This is as
opposed to the more complicated definition of multiplication given in
Section 11.2.1 of [HoTT], p. (varies),
which appears to be motivated by
handling negative numbers or handling modified Dedekind cuts in which
locatedness is omitted.
This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| ⊢ ·P = (𝑥 ∈ P, 𝑦 ∈ P ↦ 〈{𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1st ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (2nd ‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}〉) | ||
| Definition | df-iltp 7556* |
Define ordering on positive reals. We define 𝑥<P
𝑦 if there is a
positive fraction 𝑞 which is an element of the upper cut
of 𝑥
and the lower cut of 𝑦. From the definition of < in
Section 11.2.1
of [HoTT], p. (varies).
This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | ||
| Theorem | npsspw 7557 | Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ P ⊆ (𝒫 Q × 𝒫 Q) | ||
| Theorem | preqlu 7558 | Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 = 𝐵 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) | ||
| Theorem | npex 7559 | The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) |
| ⊢ P ∈ V | ||
| Theorem | elinp 7560* | Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))))) | ||
| Theorem | prop 7561 | A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | ||
| Theorem | elnp1st2nd 7562* | Membership in positive reals, using 1st and 2nd to refer to the lower and upper cut. (Contributed by Jim Kingdon, 3-Oct-2019.) |
| ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘𝐴) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐴))) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ (1st ‘𝐴) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐴))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐴) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐴)))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘𝐴) ∧ 𝑞 ∈ (2nd ‘𝐴)) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘𝐴) ∨ 𝑟 ∈ (2nd ‘𝐴)))))) | ||
| Theorem | prml 7563* | A positive real's lower cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝐿) | ||
| Theorem | prmu 7564* | A positive real's upper cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝑈) | ||
| Theorem | prssnql 7565 | The lower cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) | ||
| Theorem | prssnqu 7566 | The upper cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝑈 ⊆ Q) | ||
| Theorem | elprnql 7567 | An element of a positive real's lower cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → 𝐵 ∈ Q) | ||
| Theorem | elprnqu 7568 | An element of a positive real's upper cut is a positive fraction. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ Q) | ||
| Theorem | 0npr 7569 | The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) |
| ⊢ ¬ ∅ ∈ P | ||
| Theorem | prcdnql 7570 | A lower cut is closed downwards under the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → (𝐶 <Q 𝐵 → 𝐶 ∈ 𝐿)) | ||
| Theorem | prcunqu 7571 | An upper cut is closed upwards under the positive fractions. (Contributed by Jim Kingdon, 25-Nov-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐶 ∈ 𝑈) → (𝐶 <Q 𝐵 → 𝐵 ∈ 𝑈)) | ||
| Theorem | prubl 7572 | A positive fraction not in a lower cut is an upper bound. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <Q 𝐶)) | ||
| Theorem | prltlu 7573 | An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐵 <Q 𝐶) | ||
| Theorem | prnmaxl 7574* | A lower cut has no largest member. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → ∃𝑥 ∈ 𝐿 𝐵 <Q 𝑥) | ||
| Theorem | prnminu 7575* | An upper cut has no smallest member. (Contributed by Jim Kingdon, 7-Nov-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝑈) → ∃𝑥 ∈ 𝑈 𝑥 <Q 𝐵) | ||
| Theorem | prnmaddl 7576* | A lower cut has no largest member. Addition version. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) → ∃𝑥 ∈ Q (𝐵 +Q 𝑥) ∈ 𝐿) | ||
| Theorem | prloc 7577 | A Dedekind cut is located. (Contributed by Jim Kingdon, 23-Oct-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 <Q 𝐵) → (𝐴 ∈ 𝐿 ∨ 𝐵 ∈ 𝑈)) | ||
| Theorem | prdisj 7578 | A Dedekind cut is disjoint. (Contributed by Jim Kingdon, 15-Dec-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ Q) → ¬ (𝐴 ∈ 𝐿 ∧ 𝐴 ∈ 𝑈)) | ||
| Theorem | prarloclemlt 7579 | Two possible ways of contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7589. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ (((𝑋 ∈ ω ∧ (〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([〈(𝑦 +o 1o), 1o〉] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑋), 1o〉] ~Q ·Q 𝑃))) | ||
| Theorem | prarloclemlo 7580* | Contracting the lower side of an interval which straddles a Dedekind cut. Lemma for prarloc 7589. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ (((𝑋 ∈ ω ∧ (〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([〈(𝑦 +o 1o), 1o〉] ~Q ·Q 𝑃)) ∈ 𝐿 → (((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o suc 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)))) | ||
| Theorem | prarloclemup 7581 | Contracting the upper side of an interval which straddles a Dedekind cut. Lemma for prarloc 7589. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ (((𝑋 ∈ ω ∧ (〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈 → (((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o suc 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)))) | ||
| Theorem | prarloclem3step 7582* | Induction step for prarloclem3 7583. (Contributed by Jim Kingdon, 9-Nov-2019.) |
| ⊢ (((𝑋 ∈ ω ∧ (〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿 ∧ 𝑃 ∈ Q)) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o suc 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)) | ||
| Theorem | prarloclem3 7583* | Contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7589. (Contributed by Jim Kingdon, 27-Oct-2019.) |
| ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑋 ∈ ω ∧ 𝑃 ∈ Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑋), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +o 2o), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)) | ||
| Theorem | prarloclem4 7584* | A slight rearrangement of prarloclem3 7583. Lemma for prarloc 7589. (Contributed by Jim Kingdon, 4-Nov-2019.) |
| ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ 𝑃 ∈ Q) → (∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑥), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +o 2o), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈))) | ||
| Theorem | prarloclemn 7585* | Subtracting two from a positive integer. Lemma for prarloc 7589. (Contributed by Jim Kingdon, 5-Nov-2019.) |
| ⊢ ((𝑁 ∈ N ∧ 1o <N 𝑁) → ∃𝑥 ∈ ω (2o +o 𝑥) = 𝑁) | ||
| Theorem | prarloclem5 7586* | A substitution of zero for 𝑦 and 𝑁 minus two for 𝑥. Lemma for prarloc 7589. (Contributed by Jim Kingdon, 4-Nov-2019.) |
| ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +o 2o) +o 𝑥), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)) | ||
| Theorem | prarloclem 7587* | A special case of Lemma 6.16 from [BauerTaylor], p. 32. Given evenly spaced rational numbers from 𝐴 to 𝐴 +Q (𝑁 ·Q 𝑃) (which are in the lower and upper cuts, respectively, of a real number), there are a pair of numbers, two positions apart in the even spacing, which straddle the cut. (Contributed by Jim Kingdon, 22-Oct-2019.) |
| ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑁 ∈ N ∧ 𝑃 ∈ Q ∧ 1o <N 𝑁) ∧ (𝐴 +Q ([〈𝑁, 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1o〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +o 2o), 1o〉] ~Q ·Q 𝑃)) ∈ 𝑈)) | ||
| Theorem | prarloclemcalc 7588 | Some calculations for prarloc 7589. (Contributed by Jim Kingdon, 26-Oct-2019.) |
| ⊢ (((𝐴 = (𝑋 +Q0 ([〈𝑀, 1o〉] ~Q0 ·Q0 𝑄)) ∧ 𝐵 = (𝑋 +Q ([〈(𝑀 +o 2o), 1o〉] ~Q ·Q 𝑄))) ∧ ((𝑄 ∈ Q ∧ (𝑄 +Q 𝑄) <Q 𝑃) ∧ (𝑋 ∈ Q ∧ 𝑀 ∈ ω))) → 𝐵 <Q (𝐴 +Q 𝑃)) | ||
| Theorem | prarloc 7589* |
A Dedekind cut is arithmetically located. Part of Proposition 11.15 of
[BauerTaylor], p. 52, slightly
modified. It states that given a
tolerance 𝑃, there are elements of the lower and
upper cut which
are within that tolerance of each other.
Usually, proofs will be shorter if they use prarloc2 7590 instead. (Contributed by Jim Kingdon, 22-Oct-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝑃 ∈ Q) → ∃𝑎 ∈ 𝐿 ∃𝑏 ∈ 𝑈 𝑏 <Q (𝑎 +Q 𝑃)) | ||
| Theorem | prarloc2 7590* | A Dedekind cut is arithmetically located. This is a variation of prarloc 7589 which only constructs one (named) point and is therefore often easier to work with. It states that given a tolerance 𝑃, there are elements of the lower and upper cut which are exactly that tolerance from each other. (Contributed by Jim Kingdon, 26-Dec-2019.) |
| ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝑃 ∈ Q) → ∃𝑎 ∈ 𝐿 (𝑎 +Q 𝑃) ∈ 𝑈) | ||
| Theorem | ltrelpr 7591 | Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) |
| ⊢ <P ⊆ (P × P) | ||
| Theorem | ltdfpr 7592* | More convenient form of df-iltp 7556. (Contributed by Jim Kingdon, 15-Dec-2019.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴<P 𝐵 ↔ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝐴) ∧ 𝑞 ∈ (1st ‘𝐵)))) | ||
| Theorem | genpdflem 7593* | Simplification of upper or lower cut expression. Lemma for genpdf 7594. (Contributed by Jim Kingdon, 30-Sep-2019.) |
| ⊢ ((𝜑 ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ Q) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐵) → 𝑠 ∈ Q) ⇒ ⊢ (𝜑 → {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ 𝐴 ∧ 𝑠 ∈ 𝐵 ∧ 𝑞 = (𝑟𝐺𝑠))} = {𝑞 ∈ Q ∣ ∃𝑟 ∈ 𝐴 ∃𝑠 ∈ 𝐵 𝑞 = (𝑟𝐺𝑠)}) | ||
| Theorem | genpdf 7594* | Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1st ‘𝑤) ∧ 𝑠 ∈ (1st ‘𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (2nd ‘𝑤) ∧ 𝑠 ∈ (2nd ‘𝑣) ∧ 𝑞 = (𝑟𝐺𝑠))}〉) ⇒ ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑞 ∈ Q ∣ ∃𝑟 ∈ (1st ‘𝑤)∃𝑠 ∈ (1st ‘𝑣)𝑞 = (𝑟𝐺𝑠)}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ (2nd ‘𝑤)∃𝑠 ∈ (2nd ‘𝑣)𝑞 = (𝑟𝐺𝑠)}〉) | ||
| Theorem | genipv 7595* | Value of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingon, 3-Oct-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) = 〈{𝑞 ∈ Q ∣ ∃𝑟 ∈ (1st ‘𝐴)∃𝑠 ∈ (1st ‘𝐵)𝑞 = (𝑟𝐺𝑠)}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ (2nd ‘𝐴)∃𝑠 ∈ (2nd ‘𝐵)𝑞 = (𝑟𝐺𝑠)}〉) | ||
| Theorem | genplt2i 7596* | Operating on both sides of two inequalities, when the operation is consistent with <Q. (Contributed by Jim Kingdon, 6-Oct-2019.) |
| ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) & ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) ⇒ ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴𝐺𝐶) <Q (𝐵𝐺𝐷)) | ||
| Theorem | genpelxp 7597* | Set containing the result of adding or multiplying positive reals. (Contributed by Jim Kingdon, 5-Dec-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ∈ (𝒫 Q × 𝒫 Q)) | ||
| Theorem | genpelvl 7598* | Membership in lower cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (1st ‘𝐴)∃ℎ ∈ (1st ‘𝐵)𝐶 = (𝑔𝐺ℎ))) | ||
| Theorem | genpelvu 7599* | Membership in upper cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 15-Oct-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑔 ∈ (2nd ‘𝐴)∃ℎ ∈ (2nd ‘𝐵)𝐶 = (𝑔𝐺ℎ))) | ||
| Theorem | genpprecll 7600* | Pre-closure law for general operation on lower cuts. (Contributed by Jim Kingdon, 2-Oct-2019.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q ∃𝑧 ∈ Q (𝑦 ∈ (2nd ‘𝑤) ∧ 𝑧 ∈ (2nd ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}〉) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶 ∈ (1st ‘𝐴) ∧ 𝐷 ∈ (1st ‘𝐵)) → (𝐶𝐺𝐷) ∈ (1st ‘(𝐴𝐹𝐵)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |