| Intuitionistic Logic Explorer Theorem List (p. 76 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | addcomnqg 7501 | Addition of positive fractions is commutative. (Contributed by Jim Kingdon, 15-Sep-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴)) | ||
| Theorem | addassnqg 7502 | Addition of positive fractions is associative. (Contributed by Jim Kingdon, 16-Sep-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐶 ∈ Q) → ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶))) | ||
| Theorem | mulcomnqg 7503 | Multiplication of positive fractions is commutative. (Contributed by Jim Kingdon, 17-Sep-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴)) | ||
| Theorem | mulassnqg 7504 | Multiplication of positive fractions is associative. (Contributed by Jim Kingdon, 17-Sep-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐶 ∈ Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶))) | ||
| Theorem | mulcanenq 7505 | Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉 ~Q 〈𝐵, 𝐶〉) | ||
| Theorem | mulcanenqec 7506 | Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 17-Sep-2019.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → [〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉] ~Q = [〈𝐵, 𝐶〉] ~Q ) | ||
| Theorem | distrnqg 7507 | Multiplication of positive fractions is distributive. (Contributed by Jim Kingdon, 17-Sep-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐴 ·Q (𝐵 +Q 𝐶)) = ((𝐴 ·Q 𝐵) +Q (𝐴 ·Q 𝐶))) | ||
| Theorem | 1qec 7508 | The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.) |
| ⊢ (𝐴 ∈ N → 1Q = [〈𝐴, 𝐴〉] ~Q ) | ||
| Theorem | mulidnq 7509 | Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) |
| ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) | ||
| Theorem | recexnq 7510* | Existence of positive fraction reciprocal. (Contributed by Jim Kingdon, 20-Sep-2019.) |
| ⊢ (𝐴 ∈ Q → ∃𝑦(𝑦 ∈ Q ∧ (𝐴 ·Q 𝑦) = 1Q)) | ||
| Theorem | recmulnqg 7511 | Relationship between reciprocal and multiplication on positive fractions. (Contributed by Jim Kingdon, 19-Sep-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((*Q‘𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q)) | ||
| Theorem | recclnq 7512 | Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.) |
| ⊢ (𝐴 ∈ Q → (*Q‘𝐴) ∈ Q) | ||
| Theorem | recidnq 7513 | A positive fraction times its reciprocal is 1. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.) |
| ⊢ (𝐴 ∈ Q → (𝐴 ·Q (*Q‘𝐴)) = 1Q) | ||
| Theorem | recrecnq 7514 | Reciprocal of reciprocal of positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 29-Apr-2013.) |
| ⊢ (𝐴 ∈ Q → (*Q‘(*Q‘𝐴)) = 𝐴) | ||
| Theorem | rec1nq 7515 | Reciprocal of positive fraction one. (Contributed by Jim Kingdon, 29-Dec-2019.) |
| ⊢ (*Q‘1Q) = 1Q | ||
| Theorem | nqtri3or 7516 | Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 <Q 𝐴)) | ||
| Theorem | ltdcnq 7517 | Less-than for positive fractions is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → DECID 𝐴 <Q 𝐵) | ||
| Theorem | ltsonq 7518 | 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 4-May-2013.) |
| ⊢ <Q Or Q | ||
| Theorem | nqtric 7519 | Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <Q 𝐴))) | ||
| Theorem | ltanqg 7520 | Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) | ||
| Theorem | ltmnqg 7521 | Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵))) | ||
| Theorem | ltanqi 7522 | Ordering property of addition for positive fractions. One direction of ltanqg 7520. (Contributed by Jim Kingdon, 9-Dec-2019.) |
| ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 ∈ Q) → (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)) | ||
| Theorem | ltmnqi 7523 | Ordering property of multiplication for positive fractions. One direction of ltmnqg 7521. (Contributed by Jim Kingdon, 9-Dec-2019.) |
| ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 ∈ Q) → (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)) | ||
| Theorem | lt2addnq 7524 | Ordering property of addition for positive fractions. (Contributed by Jim Kingdon, 7-Dec-2019.) |
| ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 +Q 𝐶) <Q (𝐵 +Q 𝐷))) | ||
| Theorem | lt2mulnq 7525 | Ordering property of multiplication for positive fractions. (Contributed by Jim Kingdon, 18-Jul-2021.) |
| ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ (𝐶 ∈ Q ∧ 𝐷 ∈ Q)) → ((𝐴 <Q 𝐵 ∧ 𝐶 <Q 𝐷) → (𝐴 ·Q 𝐶) <Q (𝐵 ·Q 𝐷))) | ||
| Theorem | 1lt2nq 7526 | One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ 1Q <Q (1Q +Q 1Q) | ||
| Theorem | ltaddnq 7527 | The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) | ||
| Theorem | ltexnqq 7528* | Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by Jim Kingdon, 23-Sep-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ∃𝑥 ∈ Q (𝐴 +Q 𝑥) = 𝐵)) | ||
| Theorem | ltexnqi 7529* | Ordering on positive fractions in terms of existence of sum. (Contributed by Jim Kingdon, 30-Apr-2020.) |
| ⊢ (𝐴 <Q 𝐵 → ∃𝑥 ∈ Q (𝐴 +Q 𝑥) = 𝐵) | ||
| Theorem | halfnqq 7530* | One-half of any positive fraction is a fraction. (Contributed by Jim Kingdon, 23-Sep-2019.) |
| ⊢ (𝐴 ∈ Q → ∃𝑥 ∈ Q (𝑥 +Q 𝑥) = 𝐴) | ||
| Theorem | halfnq 7531* | One-half of any positive fraction exists. Lemma for Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 16-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ (𝐴 ∈ Q → ∃𝑥(𝑥 +Q 𝑥) = 𝐴) | ||
| Theorem | nsmallnqq 7532* | There is no smallest positive fraction. (Contributed by Jim Kingdon, 24-Sep-2019.) |
| ⊢ (𝐴 ∈ Q → ∃𝑥 ∈ Q 𝑥 <Q 𝐴) | ||
| Theorem | nsmallnq 7533* | There is no smallest positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ (𝐴 ∈ Q → ∃𝑥 𝑥 <Q 𝐴) | ||
| Theorem | subhalfnqq 7534* | There is a number which is less than half of any positive fraction. The case where 𝐴 is one is Lemma 11.4 of [BauerTaylor], p. 50, and they use the word "approximate half" for such a number (since there may be constructions, for some structures other than the rationals themselves, which rely on such an approximate half but do not require division by two as seen at halfnqq 7530). (Contributed by Jim Kingdon, 25-Nov-2019.) |
| ⊢ (𝐴 ∈ Q → ∃𝑥 ∈ Q (𝑥 +Q 𝑥) <Q 𝐴) | ||
| Theorem | ltbtwnnqq 7535* | There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by Jim Kingdon, 24-Sep-2019.) |
| ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) | ||
| Theorem | ltbtwnnq 7536* | There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) | ||
| Theorem | archnqq 7537* | For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Jim Kingdon, 1-Dec-2019.) |
| ⊢ (𝐴 ∈ Q → ∃𝑥 ∈ N 𝐴 <Q [〈𝑥, 1o〉] ~Q ) | ||
| Theorem | prarloclemarch 7538* | A version of the Archimedean property. This variation is "stronger" than archnqq 7537 in the sense that we provide an integer which is larger than a given rational 𝐴 even after being multiplied by a second rational 𝐵. (Contributed by Jim Kingdon, 30-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ∃𝑥 ∈ N 𝐴 <Q ([〈𝑥, 1o〉] ~Q ·Q 𝐵)) | ||
| Theorem | prarloclemarch2 7539* | Like prarloclemarch 7538 but the integer must be at least two, and there is also 𝐵 added to the right hand side. These details follow straightforwardly but are chosen to be helpful in the proof of prarloc 7623. (Contributed by Jim Kingdon, 25-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐶 ∈ Q) → ∃𝑥 ∈ N (1o <N 𝑥 ∧ 𝐴 <Q (𝐵 +Q ([〈𝑥, 1o〉] ~Q ·Q 𝐶)))) | ||
| Theorem | ltrnqg 7540 | Ordering property of reciprocal for positive fractions. For a simplified version of the forward implication, see ltrnqi 7541. (Contributed by Jim Kingdon, 29-Dec-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ (*Q‘𝐵) <Q (*Q‘𝐴))) | ||
| Theorem | ltrnqi 7541 | Ordering property of reciprocal for positive fractions. For the converse, see ltrnqg 7540. (Contributed by Jim Kingdon, 24-Sep-2019.) |
| ⊢ (𝐴 <Q 𝐵 → (*Q‘𝐵) <Q (*Q‘𝐴)) | ||
| Theorem | nnnq 7542 | The canonical embedding of positive integers into positive fractions. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| ⊢ (𝐴 ∈ N → [〈𝐴, 1o〉] ~Q ∈ Q) | ||
| Theorem | ltnnnq 7543 | Ordering of positive integers via <N or <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ [〈𝐴, 1o〉] ~Q <Q [〈𝐵, 1o〉] ~Q )) | ||
| Definition | df-enq0 7544* | Define equivalence relation for nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.) |
| ⊢ ~Q0 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} | ||
| Definition | df-nq0 7545 | Define class of nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.) |
| ⊢ Q0 = ((ω × N) / ~Q0 ) | ||
| Definition | df-0nq0 7546 | Define nonnegative fraction constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 5-Nov-2019.) |
| ⊢ 0Q0 = [〈∅, 1o〉] ~Q0 | ||
| Definition | df-plq0 7547* | Define addition on nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.) |
| ⊢ +Q0 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q0 ∧ 𝑦 ∈ Q0) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)〉] ~Q0 ))} | ||
| Definition | df-mq0 7548* | Define multiplication on nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.) |
| ⊢ ·Q0 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q0 ∧ 𝑦 ∈ Q0) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)〉] ~Q0 ))} | ||
| Theorem | dfmq0qs 7549* | Multiplication on nonnegative fractions. This definition is similar to df-mq0 7548 but expands Q0. (Contributed by Jim Kingdon, 22-Nov-2019.) |
| ⊢ ·Q0 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)〉] ~Q0 ))} | ||
| Theorem | dfplq0qs 7550* | Addition on nonnegative fractions. This definition is similar to df-plq0 7547 but expands Q0. (Contributed by Jim Kingdon, 24-Nov-2019.) |
| ⊢ +Q0 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈((𝑤 ·o 𝑓) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑓)〉] ~Q0 ))} | ||
| Theorem | enq0enq 7551 | Equivalence on positive fractions in terms of equivalence on nonnegative fractions. (Contributed by Jim Kingdon, 12-Nov-2019.) |
| ⊢ ~Q = ( ~Q0 ∩ ((N × N) × (N × N))) | ||
| Theorem | enq0sym 7552 | The equivalence relation for nonnegative fractions is symmetric. Lemma for enq0er 7555. (Contributed by Jim Kingdon, 14-Nov-2019.) |
| ⊢ (𝑓 ~Q0 𝑔 → 𝑔 ~Q0 𝑓) | ||
| Theorem | enq0ref 7553 | The equivalence relation for nonnegative fractions is reflexive. Lemma for enq0er 7555. (Contributed by Jim Kingdon, 14-Nov-2019.) |
| ⊢ (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓) | ||
| Theorem | enq0tr 7554 | The equivalence relation for nonnegative fractions is transitive. Lemma for enq0er 7555. (Contributed by Jim Kingdon, 14-Nov-2019.) |
| ⊢ ((𝑓 ~Q0 𝑔 ∧ 𝑔 ~Q0 ℎ) → 𝑓 ~Q0 ℎ) | ||
| Theorem | enq0er 7555 | The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.) |
| ⊢ ~Q0 Er (ω × N) | ||
| Theorem | enq0breq 7556 | Equivalence relation for nonnegative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ~Q0 〈𝐶, 𝐷〉 ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶))) | ||
| Theorem | enq0eceq 7557 | Equivalence class equality of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 24-Nov-2019.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) → ([〈𝐴, 𝐵〉] ~Q0 = [〈𝐶, 𝐷〉] ~Q0 ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶))) | ||
| Theorem | nqnq0pi 7558 | A nonnegative fraction is a positive fraction if its numerator and denominator are positive integers. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → [〈𝐴, 𝐵〉] ~Q0 = [〈𝐴, 𝐵〉] ~Q ) | ||
| Theorem | enq0ex 7559 | The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| ⊢ ~Q0 ∈ V | ||
| Theorem | nq0ex 7560 | The class of positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| ⊢ Q0 ∈ V | ||
| Theorem | nqnq0 7561 | A positive fraction is a nonnegative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| ⊢ Q ⊆ Q0 | ||
| Theorem | nq0nn 7562* | Decomposition of a nonnegative fraction into numerator and denominator. (Contributed by Jim Kingdon, 24-Nov-2019.) |
| ⊢ (𝐴 ∈ Q0 → ∃𝑤∃𝑣((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ 𝐴 = [〈𝑤, 𝑣〉] ~Q0 )) | ||
| Theorem | addcmpblnq0 7563 | Lemma showing compatibility of addition on nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.) |
| ⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) ∧ ((𝐹 ∈ ω ∧ 𝐺 ∈ N) ∧ (𝑅 ∈ ω ∧ 𝑆 ∈ N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → 〈((𝐴 ·o 𝐺) +o (𝐵 ·o 𝐹)), (𝐵 ·o 𝐺)〉 ~Q0 〈((𝐶 ·o 𝑆) +o (𝐷 ·o 𝑅)), (𝐷 ·o 𝑆)〉)) | ||
| Theorem | mulcmpblnq0 7564 | Lemma showing compatibility of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.) |
| ⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) ∧ ((𝐹 ∈ ω ∧ 𝐺 ∈ N) ∧ (𝑅 ∈ ω ∧ 𝑆 ∈ N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → 〈(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)〉 ~Q0 〈(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)〉)) | ||
| Theorem | mulcanenq0ec 7565 | Lemma for distributive law: cancellation of common factor. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ N) → [〈(𝐴 ·o 𝐵), (𝐴 ·o 𝐶)〉] ~Q0 = [〈𝐵, 𝐶〉] ~Q0 ) | ||
| Theorem | nnnq0lem1 7566* | Decomposing nonnegative fractions into natural numbers. Lemma for addnnnq0 7569 and mulnnnq0 7570. (Contributed by Jim Kingdon, 23-Nov-2019.) |
| ⊢ (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧ 𝑧 = [𝐶] ~Q0 ) ∧ ((𝐴 = [〈𝑠, 𝑓〉] ~Q0 ∧ 𝐵 = [〈𝑔, ℎ〉] ~Q0 ) ∧ 𝑞 = [𝐷] ~Q0 ))) → ((((𝑤 ∈ ω ∧ 𝑣 ∈ N) ∧ (𝑠 ∈ ω ∧ 𝑓 ∈ N)) ∧ ((𝑢 ∈ ω ∧ 𝑡 ∈ N) ∧ (𝑔 ∈ ω ∧ ℎ ∈ N))) ∧ ((𝑤 ·o 𝑓) = (𝑣 ·o 𝑠) ∧ (𝑢 ·o ℎ) = (𝑡 ·o 𝑔)))) | ||
| Theorem | addnq0mo 7567* | There is at most one result from adding nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.) |
| ⊢ ((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧ 𝑧 = [〈((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)〉] ~Q0 )) | ||
| Theorem | mulnq0mo 7568* | There is at most one result from multiplying nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.) |
| ⊢ ((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝐵 = [〈𝑢, 𝑡〉] ~Q0 ) ∧ 𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑡)〉] ~Q0 )) | ||
| Theorem | addnnnq0 7569 | Addition of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) → ([〈𝐴, 𝐵〉] ~Q0 +Q0 [〈𝐶, 𝐷〉] ~Q0 ) = [〈((𝐴 ·o 𝐷) +o (𝐵 ·o 𝐶)), (𝐵 ·o 𝐷)〉] ~Q0 ) | ||
| Theorem | mulnnnq0 7570 | Multiplication of nonnegative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 19-Nov-2019.) |
| ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ N)) → ([〈𝐴, 𝐵〉] ~Q0 ·Q0 [〈𝐶, 𝐷〉] ~Q0 ) = [〈(𝐴 ·o 𝐶), (𝐵 ·o 𝐷)〉] ~Q0 ) | ||
| Theorem | addclnq0 7571 | Closure of addition on nonnegative fractions. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 +Q0 𝐵) ∈ Q0) | ||
| Theorem | mulclnq0 7572 | Closure of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ Q0) | ||
| Theorem | nqpnq0nq 7573 | A positive fraction plus a nonnegative fraction is a positive fraction. (Contributed by Jim Kingdon, 30-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q0) → (𝐴 +Q0 𝐵) ∈ Q) | ||
| Theorem | nqnq0a 7574 | Addition of positive fractions is equal with +Q or +Q0. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = (𝐴 +Q0 𝐵)) | ||
| Theorem | nqnq0m 7575 | Multiplication of positive fractions is equal with ·Q or ·Q0. (Contributed by Jim Kingdon, 10-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = (𝐴 ·Q0 𝐵)) | ||
| Theorem | nq0m0r 7576 | Multiplication with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.) |
| ⊢ (𝐴 ∈ Q0 → (0Q0 ·Q0 𝐴) = 0Q0) | ||
| Theorem | nq0a0 7577 | Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.) |
| ⊢ (𝐴 ∈ Q0 → (𝐴 +Q0 0Q0) = 𝐴) | ||
| Theorem | nnanq0 7578 | Addition of nonnegative fractions with a common denominator. You can add two fractions with the same denominator by adding their numerators and keeping the same denominator. (Contributed by Jim Kingdon, 1-Dec-2019.) |
| ⊢ ((𝑁 ∈ ω ∧ 𝑀 ∈ ω ∧ 𝐴 ∈ N) → [〈(𝑁 +o 𝑀), 𝐴〉] ~Q0 = ([〈𝑁, 𝐴〉] ~Q0 +Q0 [〈𝑀, 𝐴〉] ~Q0 )) | ||
| Theorem | distrnq0 7579 | Multiplication of nonnegative fractions is distributive. (Contributed by Jim Kingdon, 27-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → (𝐴 ·Q0 (𝐵 +Q0 𝐶)) = ((𝐴 ·Q0 𝐵) +Q0 (𝐴 ·Q0 𝐶))) | ||
| Theorem | mulcomnq0 7580 | Multiplication of nonnegative fractions is commutative. (Contributed by Jim Kingdon, 27-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴)) | ||
| Theorem | addassnq0lemcl 7581 | A natural number closure law. Lemma for addassnq0 7582. (Contributed by Jim Kingdon, 3-Dec-2019.) |
| ⊢ (((𝐼 ∈ ω ∧ 𝐽 ∈ N) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ N)) → (((𝐼 ·o 𝐿) +o (𝐽 ·o 𝐾)) ∈ ω ∧ (𝐽 ·o 𝐿) ∈ N)) | ||
| Theorem | addassnq0 7582 | Addition of nonnegative fractions is associative. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶))) | ||
| Theorem | distnq0r 7583 | Multiplication of nonnegative fractions is distributive. Version of distrnq0 7579 with the multiplications commuted. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0 ∧ 𝐶 ∈ Q0) → ((𝐵 +Q0 𝐶) ·Q0 𝐴) = ((𝐵 ·Q0 𝐴) +Q0 (𝐶 ·Q0 𝐴))) | ||
| Theorem | addpinq1 7584 | Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.) |
| ⊢ (𝐴 ∈ N → [〈(𝐴 +N 1o), 1o〉] ~Q = ([〈𝐴, 1o〉] ~Q +Q 1Q)) | ||
| Theorem | nq02m 7585 | Multiply a nonnegative fraction by two. (Contributed by Jim Kingdon, 29-Nov-2019.) |
| ⊢ (𝐴 ∈ Q0 → ([〈2o, 1o〉] ~Q0 ·Q0 𝐴) = (𝐴 +Q0 𝐴)) | ||
| Definition | df-inp 7586* |
Define the set of positive reals. A "Dedekind cut" is a partition of
the positive rational numbers into two classes such that all the numbers
of one class are less than all the numbers of the other.
Here we follow the definition of a Dedekind cut from Definition 11.2.1 of [HoTT], p. (varies) with the one exception that we define it over positive rational numbers rather than all rational numbers. A Dedekind cut is an ordered pair of a lower set 𝑙 and an upper set 𝑢 which is inhabited (∃𝑞 ∈ Q𝑞 ∈ 𝑙 ∧ ∃𝑟 ∈ Q𝑟 ∈ 𝑢), rounded (∀𝑞 ∈ Q(𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q(𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) and likewise for 𝑢), disjoint (∀𝑞 ∈ Q¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢)) and located (∀𝑞 ∈ Q∀𝑟 ∈ Q(𝑞 <Q 𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))). See HoTT for more discussion of those terms and different ways of defining Dedekind cuts. (Note: This is a "temporary" definition used in the construction of complex numbers, and is intended to be used only by the construction.) (Contributed by Jim Kingdon, 25-Sep-2019.) |
| ⊢ P = {〈𝑙, 𝑢〉 ∣ (((𝑙 ⊆ Q ∧ 𝑢 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝑙 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑢)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝑙 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝑙)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑢 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑢))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝑙 ∧ 𝑞 ∈ 𝑢) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝑙 ∨ 𝑟 ∈ 𝑢))))} | ||
| Definition | df-i1p 7587* | Define the positive real constant 1. This is a "temporary" set used in the construction of complex numbers and is intended to be used only by the construction. (Contributed by Jim Kingdon, 25-Sep-2019.) |
| ⊢ 1P = 〈{𝑙 ∣ 𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}〉 | ||
| Definition | df-iplp 7588* |
Define addition on positive reals. From Section 11.2.1 of [HoTT], p.
(varies). We write this definition to closely resemble the definition
in HoTT although some of the conditions are redundant (for example,
𝑟
∈ (1st ‘𝑥) implies 𝑟 ∈ Q)
and can be simplified as
shown at genpdf 7628.
This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 26-Sep-2019.) |
| ⊢ +P = (𝑥 ∈ P, 𝑦 ∈ P ↦ 〈{𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1st ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (2nd ‘𝑦) ∧ 𝑞 = (𝑟 +Q 𝑠))}〉) | ||
| Definition | df-imp 7589* |
Define multiplication on positive reals. Here we use a simple
definition which is similar to df-iplp 7588 or the definition of
multiplication on positive reals in Metamath Proof Explorer. This is as
opposed to the more complicated definition of multiplication given in
Section 11.2.1 of [HoTT], p. (varies),
which appears to be motivated by
handling negative numbers or handling modified Dedekind cuts in which
locatedness is omitted.
This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| ⊢ ·P = (𝑥 ∈ P, 𝑦 ∈ P ↦ 〈{𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (1st ‘𝑥) ∧ 𝑠 ∈ (1st ‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}, {𝑞 ∈ Q ∣ ∃𝑟 ∈ Q ∃𝑠 ∈ Q (𝑟 ∈ (2nd ‘𝑥) ∧ 𝑠 ∈ (2nd ‘𝑦) ∧ 𝑞 = (𝑟 ·Q 𝑠))}〉) | ||
| Definition | df-iltp 7590* |
Define ordering on positive reals. We define 𝑥<P
𝑦 if there is a
positive fraction 𝑞 which is an element of the upper cut
of 𝑥
and the lower cut of 𝑦. From the definition of < in
Section 11.2.1
of [HoTT], p. (varies).
This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.) |
| ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ ∃𝑞 ∈ Q (𝑞 ∈ (2nd ‘𝑥) ∧ 𝑞 ∈ (1st ‘𝑦)))} | ||
| Theorem | npsspw 7591 | Lemma for proving existence of reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ P ⊆ (𝒫 Q × 𝒫 Q) | ||
| Theorem | preqlu 7592 | Two reals are equal if and only if their lower and upper cuts are. (Contributed by Jim Kingdon, 11-Dec-2019.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 = 𝐵 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) | ||
| Theorem | npex 7593 | The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) |
| ⊢ P ∈ V | ||
| Theorem | elinp 7594* | Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))))) | ||
| Theorem | prop 7595 | A positive real is an ordered pair of a lower cut and an upper cut. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | ||
| Theorem | elnp1st2nd 7596* | Membership in positive reals, using 1st and 2nd to refer to the lower and upper cut. (Contributed by Jim Kingdon, 3-Oct-2019.) |
| ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ (𝒫 Q × 𝒫 Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ (1st ‘𝐴) ∧ ∃𝑟 ∈ Q 𝑟 ∈ (2nd ‘𝐴))) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ (1st ‘𝐴) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐴))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐴) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐴)))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ (1st ‘𝐴) ∧ 𝑞 ∈ (2nd ‘𝐴)) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st ‘𝐴) ∨ 𝑟 ∈ (2nd ‘𝐴)))))) | ||
| Theorem | prml 7597* | A positive real's lower cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝐿) | ||
| Theorem | prmu 7598* | A positive real's upper cut is inhabited. (Contributed by Jim Kingdon, 27-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ 𝑈) | ||
| Theorem | prssnql 7599 | The lower cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝐿 ⊆ Q) | ||
| Theorem | prssnqu 7600 | The upper cut of a positive real is a subset of the positive fractions. (Contributed by Jim Kingdon, 28-Sep-2019.) |
| ⊢ (〈𝐿, 𝑈〉 ∈ P → 𝑈 ⊆ Q) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |