![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpridd | GIF version |
Description: The identity element of a group is a right identity. Deduction associated with grprid 13094. (Contributed by SN, 29-Jan-2025.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
grplidd.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grplidd.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
grpridd | ⊢ (𝜑 → (𝑋 + 0 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplidd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grplidd.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
4 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
5 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
6 | 3, 4, 5 | grprid 13094 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
7 | 1, 2, 6 | syl2anc 411 | 1 ⊢ (𝜑 → (𝑋 + 0 ) = 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ‘cfv 5246 (class class class)co 5910 Basecbs 12608 +gcplusg 12685 0gc0g 12857 Grpcgrp 13062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-cnex 7953 ax-resscn 7954 ax-1re 7956 ax-addrcl 7959 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4322 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-rn 4666 df-res 4667 df-iota 5207 df-fun 5248 df-fn 5249 df-fv 5254 df-riota 5865 df-ov 5913 df-inn 8973 df-2 9031 df-ndx 12611 df-slot 12612 df-base 12614 df-plusg 12698 df-0g 12859 df-mgm 12929 df-sgrp 12975 df-mnd 12988 df-grp 13065 |
This theorem is referenced by: rnglidlmcl 13960 |
Copyright terms: Public domain | W3C validator |