Step | Hyp | Ref
| Expression |
1 | | grprinvlem.n |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 𝑂) |
2 | | oveq1 5860 |
. . . . . 6
⊢ (𝑦 = 𝑛 → (𝑦 + 𝑥) = (𝑛 + 𝑥)) |
3 | 2 | eqeq1d 2179 |
. . . . 5
⊢ (𝑦 = 𝑛 → ((𝑦 + 𝑥) = 𝑂 ↔ (𝑛 + 𝑥) = 𝑂)) |
4 | 3 | cbvrexvw 2701 |
. . . 4
⊢
(∃𝑦 ∈
𝐵 (𝑦 + 𝑥) = 𝑂 ↔ ∃𝑛 ∈ 𝐵 (𝑛 + 𝑥) = 𝑂) |
5 | 1, 4 | sylib 121 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑛 ∈ 𝐵 (𝑛 + 𝑥) = 𝑂) |
6 | | grprinvlem.a |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
7 | 6 | caovassg 6011 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) |
8 | 7 | adantlr 474 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑛 ∈ 𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) |
9 | | simprl 526 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑛 ∈ 𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → 𝑥 ∈ 𝐵) |
10 | | simprrl 534 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑛 ∈ 𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → 𝑛 ∈ 𝐵) |
11 | 8, 9, 10, 9 | caovassd 6012 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑛 ∈ 𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → ((𝑥 + 𝑛) + 𝑥) = (𝑥 + (𝑛 + 𝑥))) |
12 | | grprinvlem.c |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
13 | | grprinvlem.o |
. . . . . . 7
⊢ (𝜑 → 𝑂 ∈ 𝐵) |
14 | | grprinvlem.i |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂 + 𝑥) = 𝑥) |
15 | | simprrr 535 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑛 ∈ 𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → (𝑛 + 𝑥) = 𝑂) |
16 | 12, 13, 14, 6, 1, 9,
10, 15 | grprinvd 12640 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑛 ∈ 𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → (𝑥 + 𝑛) = 𝑂) |
17 | 16 | oveq1d 5868 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑛 ∈ 𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → ((𝑥 + 𝑛) + 𝑥) = (𝑂 + 𝑥)) |
18 | 15 | oveq2d 5869 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑛 ∈ 𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → (𝑥 + (𝑛 + 𝑥)) = (𝑥 + 𝑂)) |
19 | 11, 17, 18 | 3eqtr3d 2211 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ (𝑛 ∈ 𝐵 ∧ (𝑛 + 𝑥) = 𝑂))) → (𝑂 + 𝑥) = (𝑥 + 𝑂)) |
20 | 19 | anassrs 398 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (𝑛 ∈ 𝐵 ∧ (𝑛 + 𝑥) = 𝑂)) → (𝑂 + 𝑥) = (𝑥 + 𝑂)) |
21 | 5, 20 | rexlimddv 2592 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑂 + 𝑥) = (𝑥 + 𝑂)) |
22 | 21, 14 | eqtr3d 2205 |
1
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑂) = 𝑥) |