| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq1 | GIF version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
| Ref | Expression |
|---|---|
| oveq1 | ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 3808 | . . 3 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
| 2 | 1 | fveq2d 5562 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹‘〈𝐴, 𝐶〉) = (𝐹‘〈𝐵, 𝐶〉)) |
| 3 | df-ov 5925 | . 2 ⊢ (𝐴𝐹𝐶) = (𝐹‘〈𝐴, 𝐶〉) | |
| 4 | df-ov 5925 | . 2 ⊢ (𝐵𝐹𝐶) = (𝐹‘〈𝐵, 𝐶〉) | |
| 5 | 2, 3, 4 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) |
| Copyright terms: Public domain | W3C validator |