| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > isgrpde | GIF version | ||
| Description: Deduce a group from its properties. In this version of isgrpd 13155, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 6-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| isgrpd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | 
| isgrpd.p | ⊢ (𝜑 → + = (+g‘𝐺)) | 
| isgrpd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | 
| isgrpd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | 
| isgrpd.z | ⊢ (𝜑 → 0 ∈ 𝐵) | 
| isgrpd.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) | 
| isgrpde.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) | 
| Ref | Expression | 
|---|---|
| isgrpde | ⊢ (𝜑 → 𝐺 ∈ Grp) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isgrpd.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 2 | isgrpd.p | . 2 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 3 | isgrpd.z | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) | |
| 4 | isgrpd.i | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) | |
| 5 | isgrpd.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | |
| 6 | isgrpd.a | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 7 | isgrpde.n | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) | |
| 8 | 5, 3, 4, 6, 7 | grprida 13030 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) | 
| 9 | 1, 2, 3, 4, 8 | grpidd 13026 | . 2 ⊢ (𝜑 → 0 = (0g‘𝐺)) | 
| 10 | 1, 2, 5, 6, 3, 4, 8 | ismndd 13078 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) | 
| 11 | 1, 2, 9, 10, 7 | isgrpd2e 13152 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 Grpcgrp 13132 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 | 
| This theorem is referenced by: isgrpd 13155 dfgrp2 13159 imasgrp2 13240 unitgrp 13672 | 
| Copyright terms: Public domain | W3C validator |