| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isgrpde | GIF version | ||
| Description: Deduce a group from its properties. In this version of isgrpd 13542, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| isgrpd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| isgrpd.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
| isgrpd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| isgrpd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| isgrpd.z | ⊢ (𝜑 → 0 ∈ 𝐵) |
| isgrpd.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
| isgrpde.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) |
| Ref | Expression |
|---|---|
| isgrpde | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpd.b | . 2 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 2 | isgrpd.p | . 2 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 3 | isgrpd.z | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) | |
| 4 | isgrpd.i | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) | |
| 5 | isgrpd.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | |
| 6 | isgrpd.a | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 7 | isgrpde.n | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) | |
| 8 | 5, 3, 4, 6, 7 | grprida 13406 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
| 9 | 1, 2, 3, 4, 8 | grpidd 13402 | . 2 ⊢ (𝜑 → 0 = (0g‘𝐺)) |
| 10 | 1, 2, 5, 6, 3, 4, 8 | ismndd 13456 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 11 | 1, 2, 9, 10, 7 | isgrpd2e 13539 | 1 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 +gcplusg 13096 Grpcgrp 13519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-riota 5947 df-ov 5997 df-inn 9099 df-2 9157 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 |
| This theorem is referenced by: isgrpd 13542 dfgrp2 13546 imasgrp2 13633 unitgrp 14065 |
| Copyright terms: Public domain | W3C validator |