ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdilem2 GIF version

Theorem lgsdilem2 14104
Description: Lemma for lgsdi 14105. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdilem2.1 (𝜑𝐴 ∈ ℤ)
lgsdilem2.2 (𝜑𝑀 ∈ ℤ)
lgsdilem2.3 (𝜑𝑁 ∈ ℤ)
lgsdilem2.4 (𝜑𝑀 ≠ 0)
lgsdilem2.5 (𝜑𝑁 ≠ 0)
lgsdilem2.6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))
Assertion
Ref Expression
lgsdilem2 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁))))
Distinct variable groups:   𝑛,𝑀   𝐴,𝑛   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)

Proof of Theorem lgsdilem2
Dummy variables 𝑘 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulid1 7945 . . 3 (𝑘 ∈ ℂ → (𝑘 · 1) = 𝑘)
21adantl 277 . 2 ((𝜑𝑘 ∈ ℂ) → (𝑘 · 1) = 𝑘)
3 lgsdilem2.2 . . . 4 (𝜑𝑀 ∈ ℤ)
4 lgsdilem2.4 . . . 4 (𝜑𝑀 ≠ 0)
5 nnabscl 11093 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
63, 4, 5syl2anc 411 . . 3 (𝜑 → (abs‘𝑀) ∈ ℕ)
7 nnuz 9552 . . 3 ℕ = (ℤ‘1)
86, 7eleqtrdi 2270 . 2 (𝜑 → (abs‘𝑀) ∈ (ℤ‘1))
96nnzd 9363 . . 3 (𝜑 → (abs‘𝑀) ∈ ℤ)
10 lgsdilem2.3 . . . . . 6 (𝜑𝑁 ∈ ℤ)
113, 10zmulcld 9370 . . . . 5 (𝜑 → (𝑀 · 𝑁) ∈ ℤ)
123zcnd 9365 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
1310zcnd 9365 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
14 0z 9253 . . . . . . . . 9 0 ∈ ℤ
15 zapne 9316 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 # 0 ↔ 𝑀 ≠ 0))
163, 14, 15sylancl 413 . . . . . . . 8 (𝜑 → (𝑀 # 0 ↔ 𝑀 ≠ 0))
174, 16mpbird 167 . . . . . . 7 (𝜑𝑀 # 0)
18 lgsdilem2.5 . . . . . . . 8 (𝜑𝑁 ≠ 0)
19 zapne 9316 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 # 0 ↔ 𝑁 ≠ 0))
2010, 14, 19sylancl 413 . . . . . . . 8 (𝜑 → (𝑁 # 0 ↔ 𝑁 ≠ 0))
2118, 20mpbird 167 . . . . . . 7 (𝜑𝑁 # 0)
2212, 13, 17, 21mulap0d 8604 . . . . . 6 (𝜑 → (𝑀 · 𝑁) # 0)
23 zapne 9316 . . . . . . 7 (((𝑀 · 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝑀 · 𝑁) # 0 ↔ (𝑀 · 𝑁) ≠ 0))
2411, 14, 23sylancl 413 . . . . . 6 (𝜑 → ((𝑀 · 𝑁) # 0 ↔ (𝑀 · 𝑁) ≠ 0))
2522, 24mpbid 147 . . . . 5 (𝜑 → (𝑀 · 𝑁) ≠ 0)
26 nnabscl 11093 . . . . 5 (((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
2711, 25, 26syl2anc 411 . . . 4 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
2827nnzd 9363 . . 3 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ ℤ)
2912abscld 11174 . . . . 5 (𝜑 → (abs‘𝑀) ∈ ℝ)
3013abscld 11174 . . . . 5 (𝜑 → (abs‘𝑁) ∈ ℝ)
3112absge0d 11177 . . . . 5 (𝜑 → 0 ≤ (abs‘𝑀))
32 nnabscl 11093 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
3310, 18, 32syl2anc 411 . . . . . 6 (𝜑 → (abs‘𝑁) ∈ ℕ)
3433nnge1d 8951 . . . . 5 (𝜑 → 1 ≤ (abs‘𝑁))
3529, 30, 31, 34lemulge11d 8883 . . . 4 (𝜑 → (abs‘𝑀) ≤ ((abs‘𝑀) · (abs‘𝑁)))
3612, 13absmuld 11187 . . . 4 (𝜑 → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
3735, 36breqtrrd 4028 . . 3 (𝜑 → (abs‘𝑀) ≤ (abs‘(𝑀 · 𝑁)))
38 eluz2 9523 . . 3 ((abs‘(𝑀 · 𝑁)) ∈ (ℤ‘(abs‘𝑀)) ↔ ((abs‘𝑀) ∈ ℤ ∧ (abs‘(𝑀 · 𝑁)) ∈ ℤ ∧ (abs‘𝑀) ≤ (abs‘(𝑀 · 𝑁))))
399, 28, 37, 38syl3anbrc 1181 . 2 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ (ℤ‘(abs‘𝑀)))
40 1zzd 9269 . . . . 5 (𝜑 → 1 ∈ ℤ)
41 lgsdilem2.1 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
42 lgsdilem2.6 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))
4342lgsfcl3 14089 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝐹:ℕ⟶ℤ)
4441, 3, 4, 43syl3anc 1238 . . . . . 6 (𝜑𝐹:ℕ⟶ℤ)
4544ffvelcdmda 5647 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℤ)
46 zmulcl 9295 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑣 ∈ ℤ) → (𝑘 · 𝑣) ∈ ℤ)
4746adantl 277 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝑘 · 𝑣) ∈ ℤ)
487, 40, 45, 47seqf 10447 . . . 4 (𝜑 → seq1( · , 𝐹):ℕ⟶ℤ)
4948, 6ffvelcdmd 5648 . . 3 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) ∈ ℤ)
5049zcnd 9365 . 2 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) ∈ ℂ)
51 eleq1w 2238 . . . . 5 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
52 oveq2 5877 . . . . . 6 (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘))
53 oveq1 5876 . . . . . 6 (𝑛 = 𝑘 → (𝑛 pCnt 𝑀) = (𝑘 pCnt 𝑀))
5452, 53oveq12d 5887 . . . . 5 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)))
5551, 54ifbieq1d 3556 . . . 4 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
566peano2nnd 8923 . . . . 5 (𝜑 → ((abs‘𝑀) + 1) ∈ ℕ)
57 elfzuz 10007 . . . . 5 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → 𝑘 ∈ (ℤ‘((abs‘𝑀) + 1)))
58 eluznn 9589 . . . . 5 ((((abs‘𝑀) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((abs‘𝑀) + 1))) → 𝑘 ∈ ℕ)
5956, 57, 58syl2an 289 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → 𝑘 ∈ ℕ)
6041ad2antrr 488 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
61 prmz 12094 . . . . . . . 8 (𝑘 ∈ ℙ → 𝑘 ∈ ℤ)
6261adantl 277 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℤ)
63 lgscl 14082 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈ ℤ)
6460, 62, 63syl2anc 411 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
65 simpr 110 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
663ad2antrr 488 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ∈ ℤ)
674ad2antrr 488 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ≠ 0)
68 pczcl 12281 . . . . . . 7 ((𝑘 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝑘 pCnt 𝑀) ∈ ℕ0)
6965, 66, 67, 68syl12anc 1236 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑀) ∈ ℕ0)
70 zexpcl 10521 . . . . . 6 (((𝐴 /L 𝑘) ∈ ℤ ∧ (𝑘 pCnt 𝑀) ∈ ℕ0) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) ∈ ℤ)
7164, 69, 70syl2anc 411 . . . . 5 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) ∈ ℤ)
72 1zzd 9269 . . . . 5 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ ¬ 𝑘 ∈ ℙ) → 1 ∈ ℤ)
73 prmdc 12113 . . . . . 6 (𝑘 ∈ ℕ → DECID 𝑘 ∈ ℙ)
7459, 73syl 14 . . . . 5 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → DECID 𝑘 ∈ ℙ)
7571, 72, 74ifcldadc 3563 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) ∈ ℤ)
7642, 55, 59, 75fvmptd3 5605 . . 3 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (𝐹𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
77 zq 9615 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
7866, 77syl 14 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ∈ ℚ)
79 pcabs 12308 . . . . . . . . 9 ((𝑘 ∈ ℙ ∧ 𝑀 ∈ ℚ) → (𝑘 pCnt (abs‘𝑀)) = (𝑘 pCnt 𝑀))
8065, 78, 79syl2anc 411 . . . . . . . 8 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (abs‘𝑀)) = (𝑘 pCnt 𝑀))
81 elfzle1 10013 . . . . . . . . . . . . . 14 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → ((abs‘𝑀) + 1) ≤ 𝑘)
8281adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) + 1) ≤ 𝑘)
83 elfzelz 10011 . . . . . . . . . . . . . 14 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → 𝑘 ∈ ℤ)
84 zltp1le 9296 . . . . . . . . . . . . . 14 (((abs‘𝑀) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((abs‘𝑀) < 𝑘 ↔ ((abs‘𝑀) + 1) ≤ 𝑘))
859, 83, 84syl2an 289 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) < 𝑘 ↔ ((abs‘𝑀) + 1) ≤ 𝑘))
8682, 85mpbird 167 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (abs‘𝑀) < 𝑘)
87 zltnle 9288 . . . . . . . . . . . . 13 (((abs‘𝑀) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((abs‘𝑀) < 𝑘 ↔ ¬ 𝑘 ≤ (abs‘𝑀)))
889, 83, 87syl2an 289 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) < 𝑘 ↔ ¬ 𝑘 ≤ (abs‘𝑀)))
8986, 88mpbid 147 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ¬ 𝑘 ≤ (abs‘𝑀))
9089adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ¬ 𝑘 ≤ (abs‘𝑀))
9166, 67, 5syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (abs‘𝑀) ∈ ℕ)
92 dvdsle 11833 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ (abs‘𝑀) ∈ ℕ) → (𝑘 ∥ (abs‘𝑀) → 𝑘 ≤ (abs‘𝑀)))
9362, 91, 92syl2anc 411 . . . . . . . . . 10 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 ∥ (abs‘𝑀) → 𝑘 ≤ (abs‘𝑀)))
9490, 93mtod 663 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ¬ 𝑘 ∥ (abs‘𝑀))
95 pceq0 12304 . . . . . . . . . 10 ((𝑘 ∈ ℙ ∧ (abs‘𝑀) ∈ ℕ) → ((𝑘 pCnt (abs‘𝑀)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑀)))
9665, 91, 95syl2anc 411 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝑘 pCnt (abs‘𝑀)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑀)))
9794, 96mpbird 167 . . . . . . . 8 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (abs‘𝑀)) = 0)
9880, 97eqtr3d 2212 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑀) = 0)
9998oveq2d 5885 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) = ((𝐴 /L 𝑘)↑0))
10064zcnd 9365 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ)
101100exp0d 10633 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑0) = 1)
10299, 101eqtrd 2210 . . . . 5 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) = 1)
103102, 74ifeq1dadc 3564 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = if(𝑘 ∈ ℙ, 1, 1))
104 ifiddc 3567 . . . . 5 (DECID 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, 1, 1) = 1)
10574, 104syl 14 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, 1, 1) = 1)
106103, 105eqtrd 2210 . . 3 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = 1)
10776, 106eqtrd 2210 . 2 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (𝐹𝑘) = 1)
10844adantr 276 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝐹:ℕ⟶ℤ)
109 elnnuz 9553 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
110109biimpri 133 . . . . 5 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ)
111110adantl 277 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
112108, 111ffvelcdmd 5648 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐹𝑘) ∈ ℤ)
113112zcnd 9365 . 2 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐹𝑘) ∈ ℂ)
114 mulcl 7929 . . 3 ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 · 𝑣) ∈ ℂ)
115114adantl 277 . 2 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ)
1162, 8, 39, 50, 107, 113, 115seq3id2 10495 1 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  ifcif 3534   class class class wbr 4000  cmpt 4061  wf 5208  cfv 5212  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983   # cap 8528  cn 8908  0cn0 9165  cz 9242  cuz 9517  cq 9608  ...cfz 9995  seqcseq 10431  cexp 10505  abscabs 10990  cdvds 11778  cprime 12090   pCnt cpc 12267   /L clgs 14065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-2o 6412  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543  df-dvds 11779  df-gcd 11927  df-prm 12091  df-phi 12194  df-pc 12268  df-lgs 14066
This theorem is referenced by:  lgsdi  14105
  Copyright terms: Public domain W3C validator