ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdilem2 GIF version

Theorem lgsdilem2 15484
Description: Lemma for lgsdi 15485. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdilem2.1 (𝜑𝐴 ∈ ℤ)
lgsdilem2.2 (𝜑𝑀 ∈ ℤ)
lgsdilem2.3 (𝜑𝑁 ∈ ℤ)
lgsdilem2.4 (𝜑𝑀 ≠ 0)
lgsdilem2.5 (𝜑𝑁 ≠ 0)
lgsdilem2.6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))
Assertion
Ref Expression
lgsdilem2 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁))))
Distinct variable groups:   𝑛,𝑀   𝐴,𝑛   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)

Proof of Theorem lgsdilem2
Dummy variables 𝑘 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulrid 8068 . . 3 (𝑘 ∈ ℂ → (𝑘 · 1) = 𝑘)
21adantl 277 . 2 ((𝜑𝑘 ∈ ℂ) → (𝑘 · 1) = 𝑘)
3 lgsdilem2.2 . . . 4 (𝜑𝑀 ∈ ℤ)
4 lgsdilem2.4 . . . 4 (𝜑𝑀 ≠ 0)
5 nnabscl 11382 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
63, 4, 5syl2anc 411 . . 3 (𝜑 → (abs‘𝑀) ∈ ℕ)
7 nnuz 9683 . . 3 ℕ = (ℤ‘1)
86, 7eleqtrdi 2297 . 2 (𝜑 → (abs‘𝑀) ∈ (ℤ‘1))
96nnzd 9493 . . 3 (𝜑 → (abs‘𝑀) ∈ ℤ)
10 lgsdilem2.3 . . . . . 6 (𝜑𝑁 ∈ ℤ)
113, 10zmulcld 9500 . . . . 5 (𝜑 → (𝑀 · 𝑁) ∈ ℤ)
123zcnd 9495 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
1310zcnd 9495 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
14 0z 9382 . . . . . . . . 9 0 ∈ ℤ
15 zapne 9446 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 # 0 ↔ 𝑀 ≠ 0))
163, 14, 15sylancl 413 . . . . . . . 8 (𝜑 → (𝑀 # 0 ↔ 𝑀 ≠ 0))
174, 16mpbird 167 . . . . . . 7 (𝜑𝑀 # 0)
18 lgsdilem2.5 . . . . . . . 8 (𝜑𝑁 ≠ 0)
19 zapne 9446 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 # 0 ↔ 𝑁 ≠ 0))
2010, 14, 19sylancl 413 . . . . . . . 8 (𝜑 → (𝑁 # 0 ↔ 𝑁 ≠ 0))
2118, 20mpbird 167 . . . . . . 7 (𝜑𝑁 # 0)
2212, 13, 17, 21mulap0d 8730 . . . . . 6 (𝜑 → (𝑀 · 𝑁) # 0)
23 zapne 9446 . . . . . . 7 (((𝑀 · 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝑀 · 𝑁) # 0 ↔ (𝑀 · 𝑁) ≠ 0))
2411, 14, 23sylancl 413 . . . . . 6 (𝜑 → ((𝑀 · 𝑁) # 0 ↔ (𝑀 · 𝑁) ≠ 0))
2522, 24mpbid 147 . . . . 5 (𝜑 → (𝑀 · 𝑁) ≠ 0)
26 nnabscl 11382 . . . . 5 (((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
2711, 25, 26syl2anc 411 . . . 4 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
2827nnzd 9493 . . 3 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ ℤ)
2912abscld 11463 . . . . 5 (𝜑 → (abs‘𝑀) ∈ ℝ)
3013abscld 11463 . . . . 5 (𝜑 → (abs‘𝑁) ∈ ℝ)
3112absge0d 11466 . . . . 5 (𝜑 → 0 ≤ (abs‘𝑀))
32 nnabscl 11382 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
3310, 18, 32syl2anc 411 . . . . . 6 (𝜑 → (abs‘𝑁) ∈ ℕ)
3433nnge1d 9078 . . . . 5 (𝜑 → 1 ≤ (abs‘𝑁))
3529, 30, 31, 34lemulge11d 9009 . . . 4 (𝜑 → (abs‘𝑀) ≤ ((abs‘𝑀) · (abs‘𝑁)))
3612, 13absmuld 11476 . . . 4 (𝜑 → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
3735, 36breqtrrd 4071 . . 3 (𝜑 → (abs‘𝑀) ≤ (abs‘(𝑀 · 𝑁)))
38 eluz2 9653 . . 3 ((abs‘(𝑀 · 𝑁)) ∈ (ℤ‘(abs‘𝑀)) ↔ ((abs‘𝑀) ∈ ℤ ∧ (abs‘(𝑀 · 𝑁)) ∈ ℤ ∧ (abs‘𝑀) ≤ (abs‘(𝑀 · 𝑁))))
399, 28, 37, 38syl3anbrc 1183 . 2 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ (ℤ‘(abs‘𝑀)))
40 1zzd 9398 . . . . 5 (𝜑 → 1 ∈ ℤ)
41 lgsdilem2.1 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
42 lgsdilem2.6 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))
4342lgsfcl3 15469 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝐹:ℕ⟶ℤ)
4441, 3, 4, 43syl3anc 1249 . . . . . 6 (𝜑𝐹:ℕ⟶ℤ)
4544ffvelcdmda 5714 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℤ)
46 zmulcl 9425 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑣 ∈ ℤ) → (𝑘 · 𝑣) ∈ ℤ)
4746adantl 277 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝑘 · 𝑣) ∈ ℤ)
487, 40, 45, 47seqf 10607 . . . 4 (𝜑 → seq1( · , 𝐹):ℕ⟶ℤ)
4948, 6ffvelcdmd 5715 . . 3 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) ∈ ℤ)
5049zcnd 9495 . 2 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) ∈ ℂ)
51 eleq1w 2265 . . . . 5 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
52 oveq2 5951 . . . . . 6 (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘))
53 oveq1 5950 . . . . . 6 (𝑛 = 𝑘 → (𝑛 pCnt 𝑀) = (𝑘 pCnt 𝑀))
5452, 53oveq12d 5961 . . . . 5 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)))
5551, 54ifbieq1d 3592 . . . 4 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
566peano2nnd 9050 . . . . 5 (𝜑 → ((abs‘𝑀) + 1) ∈ ℕ)
57 elfzuz 10142 . . . . 5 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → 𝑘 ∈ (ℤ‘((abs‘𝑀) + 1)))
58 eluznn 9720 . . . . 5 ((((abs‘𝑀) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((abs‘𝑀) + 1))) → 𝑘 ∈ ℕ)
5956, 57, 58syl2an 289 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → 𝑘 ∈ ℕ)
6041ad2antrr 488 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
61 prmz 12404 . . . . . . . 8 (𝑘 ∈ ℙ → 𝑘 ∈ ℤ)
6261adantl 277 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℤ)
63 lgscl 15462 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈ ℤ)
6460, 62, 63syl2anc 411 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
65 simpr 110 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
663ad2antrr 488 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ∈ ℤ)
674ad2antrr 488 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ≠ 0)
68 pczcl 12592 . . . . . . 7 ((𝑘 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝑘 pCnt 𝑀) ∈ ℕ0)
6965, 66, 67, 68syl12anc 1247 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑀) ∈ ℕ0)
70 zexpcl 10697 . . . . . 6 (((𝐴 /L 𝑘) ∈ ℤ ∧ (𝑘 pCnt 𝑀) ∈ ℕ0) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) ∈ ℤ)
7164, 69, 70syl2anc 411 . . . . 5 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) ∈ ℤ)
72 1zzd 9398 . . . . 5 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ ¬ 𝑘 ∈ ℙ) → 1 ∈ ℤ)
73 prmdc 12423 . . . . . 6 (𝑘 ∈ ℕ → DECID 𝑘 ∈ ℙ)
7459, 73syl 14 . . . . 5 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → DECID 𝑘 ∈ ℙ)
7571, 72, 74ifcldadc 3599 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) ∈ ℤ)
7642, 55, 59, 75fvmptd3 5672 . . 3 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (𝐹𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
77 zq 9746 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
7866, 77syl 14 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ∈ ℚ)
79 pcabs 12620 . . . . . . . . 9 ((𝑘 ∈ ℙ ∧ 𝑀 ∈ ℚ) → (𝑘 pCnt (abs‘𝑀)) = (𝑘 pCnt 𝑀))
8065, 78, 79syl2anc 411 . . . . . . . 8 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (abs‘𝑀)) = (𝑘 pCnt 𝑀))
81 elfzle1 10148 . . . . . . . . . . . . . 14 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → ((abs‘𝑀) + 1) ≤ 𝑘)
8281adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) + 1) ≤ 𝑘)
83 elfzelz 10146 . . . . . . . . . . . . . 14 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → 𝑘 ∈ ℤ)
84 zltp1le 9426 . . . . . . . . . . . . . 14 (((abs‘𝑀) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((abs‘𝑀) < 𝑘 ↔ ((abs‘𝑀) + 1) ≤ 𝑘))
859, 83, 84syl2an 289 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) < 𝑘 ↔ ((abs‘𝑀) + 1) ≤ 𝑘))
8682, 85mpbird 167 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (abs‘𝑀) < 𝑘)
87 zltnle 9417 . . . . . . . . . . . . 13 (((abs‘𝑀) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((abs‘𝑀) < 𝑘 ↔ ¬ 𝑘 ≤ (abs‘𝑀)))
889, 83, 87syl2an 289 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) < 𝑘 ↔ ¬ 𝑘 ≤ (abs‘𝑀)))
8986, 88mpbid 147 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ¬ 𝑘 ≤ (abs‘𝑀))
9089adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ¬ 𝑘 ≤ (abs‘𝑀))
9166, 67, 5syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (abs‘𝑀) ∈ ℕ)
92 dvdsle 12126 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ (abs‘𝑀) ∈ ℕ) → (𝑘 ∥ (abs‘𝑀) → 𝑘 ≤ (abs‘𝑀)))
9362, 91, 92syl2anc 411 . . . . . . . . . 10 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 ∥ (abs‘𝑀) → 𝑘 ≤ (abs‘𝑀)))
9490, 93mtod 664 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ¬ 𝑘 ∥ (abs‘𝑀))
95 pceq0 12616 . . . . . . . . . 10 ((𝑘 ∈ ℙ ∧ (abs‘𝑀) ∈ ℕ) → ((𝑘 pCnt (abs‘𝑀)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑀)))
9665, 91, 95syl2anc 411 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝑘 pCnt (abs‘𝑀)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑀)))
9794, 96mpbird 167 . . . . . . . 8 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (abs‘𝑀)) = 0)
9880, 97eqtr3d 2239 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑀) = 0)
9998oveq2d 5959 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) = ((𝐴 /L 𝑘)↑0))
10064zcnd 9495 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ)
101100exp0d 10810 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑0) = 1)
10299, 101eqtrd 2237 . . . . 5 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) = 1)
103102, 74ifeq1dadc 3600 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = if(𝑘 ∈ ℙ, 1, 1))
104 ifiddc 3605 . . . . 5 (DECID 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, 1, 1) = 1)
10574, 104syl 14 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, 1, 1) = 1)
106103, 105eqtrd 2237 . . 3 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = 1)
10776, 106eqtrd 2237 . 2 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (𝐹𝑘) = 1)
10844adantr 276 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝐹:ℕ⟶ℤ)
109 elnnuz 9684 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
110109biimpri 133 . . . . 5 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ)
111110adantl 277 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
112108, 111ffvelcdmd 5715 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐹𝑘) ∈ ℤ)
113112zcnd 9495 . 2 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐹𝑘) ∈ ℂ)
114 mulcl 8051 . . 3 ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 · 𝑣) ∈ ℂ)
115114adantl 277 . 2 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ)
1162, 8, 39, 50, 107, 113, 115seq3id2 10669 1 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1372  wcel 2175  wne 2375  ifcif 3570   class class class wbr 4043  cmpt 4104  wf 5266  cfv 5270  (class class class)co 5943  cc 7922  0cc0 7924  1c1 7925   + caddc 7927   · cmul 7929   < clt 8106  cle 8107   # cap 8653  cn 9035  0cn0 9294  cz 9371  cuz 9647  cq 9739  ...cfz 10129  seqcseq 10590  cexp 10681  abscabs 11279  cdvds 12069  cprime 12400   pCnt cpc 12578   /L clgs 15445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-xor 1395  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-2o 6502  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-clim 11561  df-proddc 11833  df-dvds 12070  df-gcd 12246  df-prm 12401  df-phi 12504  df-pc 12579  df-lgs 15446
This theorem is referenced by:  lgsdi  15485
  Copyright terms: Public domain W3C validator