ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdilem2 GIF version

Theorem lgsdilem2 15628
Description: Lemma for lgsdi 15629. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdilem2.1 (𝜑𝐴 ∈ ℤ)
lgsdilem2.2 (𝜑𝑀 ∈ ℤ)
lgsdilem2.3 (𝜑𝑁 ∈ ℤ)
lgsdilem2.4 (𝜑𝑀 ≠ 0)
lgsdilem2.5 (𝜑𝑁 ≠ 0)
lgsdilem2.6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))
Assertion
Ref Expression
lgsdilem2 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁))))
Distinct variable groups:   𝑛,𝑀   𝐴,𝑛   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)

Proof of Theorem lgsdilem2
Dummy variables 𝑘 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulrid 8104 . . 3 (𝑘 ∈ ℂ → (𝑘 · 1) = 𝑘)
21adantl 277 . 2 ((𝜑𝑘 ∈ ℂ) → (𝑘 · 1) = 𝑘)
3 lgsdilem2.2 . . . 4 (𝜑𝑀 ∈ ℤ)
4 lgsdilem2.4 . . . 4 (𝜑𝑀 ≠ 0)
5 nnabscl 11526 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
63, 4, 5syl2anc 411 . . 3 (𝜑 → (abs‘𝑀) ∈ ℕ)
7 nnuz 9719 . . 3 ℕ = (ℤ‘1)
86, 7eleqtrdi 2300 . 2 (𝜑 → (abs‘𝑀) ∈ (ℤ‘1))
96nnzd 9529 . . 3 (𝜑 → (abs‘𝑀) ∈ ℤ)
10 lgsdilem2.3 . . . . . 6 (𝜑𝑁 ∈ ℤ)
113, 10zmulcld 9536 . . . . 5 (𝜑 → (𝑀 · 𝑁) ∈ ℤ)
123zcnd 9531 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
1310zcnd 9531 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
14 0z 9418 . . . . . . . . 9 0 ∈ ℤ
15 zapne 9482 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑀 # 0 ↔ 𝑀 ≠ 0))
163, 14, 15sylancl 413 . . . . . . . 8 (𝜑 → (𝑀 # 0 ↔ 𝑀 ≠ 0))
174, 16mpbird 167 . . . . . . 7 (𝜑𝑀 # 0)
18 lgsdilem2.5 . . . . . . . 8 (𝜑𝑁 ≠ 0)
19 zapne 9482 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 # 0 ↔ 𝑁 ≠ 0))
2010, 14, 19sylancl 413 . . . . . . . 8 (𝜑 → (𝑁 # 0 ↔ 𝑁 ≠ 0))
2118, 20mpbird 167 . . . . . . 7 (𝜑𝑁 # 0)
2212, 13, 17, 21mulap0d 8766 . . . . . 6 (𝜑 → (𝑀 · 𝑁) # 0)
23 zapne 9482 . . . . . . 7 (((𝑀 · 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝑀 · 𝑁) # 0 ↔ (𝑀 · 𝑁) ≠ 0))
2411, 14, 23sylancl 413 . . . . . 6 (𝜑 → ((𝑀 · 𝑁) # 0 ↔ (𝑀 · 𝑁) ≠ 0))
2522, 24mpbid 147 . . . . 5 (𝜑 → (𝑀 · 𝑁) ≠ 0)
26 nnabscl 11526 . . . . 5 (((𝑀 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ≠ 0) → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
2711, 25, 26syl2anc 411 . . . 4 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ ℕ)
2827nnzd 9529 . . 3 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ ℤ)
2912abscld 11607 . . . . 5 (𝜑 → (abs‘𝑀) ∈ ℝ)
3013abscld 11607 . . . . 5 (𝜑 → (abs‘𝑁) ∈ ℝ)
3112absge0d 11610 . . . . 5 (𝜑 → 0 ≤ (abs‘𝑀))
32 nnabscl 11526 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
3310, 18, 32syl2anc 411 . . . . . 6 (𝜑 → (abs‘𝑁) ∈ ℕ)
3433nnge1d 9114 . . . . 5 (𝜑 → 1 ≤ (abs‘𝑁))
3529, 30, 31, 34lemulge11d 9045 . . . 4 (𝜑 → (abs‘𝑀) ≤ ((abs‘𝑀) · (abs‘𝑁)))
3612, 13absmuld 11620 . . . 4 (𝜑 → (abs‘(𝑀 · 𝑁)) = ((abs‘𝑀) · (abs‘𝑁)))
3735, 36breqtrrd 4087 . . 3 (𝜑 → (abs‘𝑀) ≤ (abs‘(𝑀 · 𝑁)))
38 eluz2 9689 . . 3 ((abs‘(𝑀 · 𝑁)) ∈ (ℤ‘(abs‘𝑀)) ↔ ((abs‘𝑀) ∈ ℤ ∧ (abs‘(𝑀 · 𝑁)) ∈ ℤ ∧ (abs‘𝑀) ≤ (abs‘(𝑀 · 𝑁))))
399, 28, 37, 38syl3anbrc 1184 . 2 (𝜑 → (abs‘(𝑀 · 𝑁)) ∈ (ℤ‘(abs‘𝑀)))
40 1zzd 9434 . . . . 5 (𝜑 → 1 ∈ ℤ)
41 lgsdilem2.1 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
42 lgsdilem2.6 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1))
4342lgsfcl3 15613 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝐹:ℕ⟶ℤ)
4441, 3, 4, 43syl3anc 1250 . . . . . 6 (𝜑𝐹:ℕ⟶ℤ)
4544ffvelcdmda 5738 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℤ)
46 zmulcl 9461 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑣 ∈ ℤ) → (𝑘 · 𝑣) ∈ ℤ)
4746adantl 277 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝑘 · 𝑣) ∈ ℤ)
487, 40, 45, 47seqf 10646 . . . 4 (𝜑 → seq1( · , 𝐹):ℕ⟶ℤ)
4948, 6ffvelcdmd 5739 . . 3 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) ∈ ℤ)
5049zcnd 9531 . 2 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) ∈ ℂ)
51 eleq1w 2268 . . . . 5 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
52 oveq2 5975 . . . . . 6 (𝑛 = 𝑘 → (𝐴 /L 𝑛) = (𝐴 /L 𝑘))
53 oveq1 5974 . . . . . 6 (𝑛 = 𝑘 → (𝑛 pCnt 𝑀) = (𝑘 pCnt 𝑀))
5452, 53oveq12d 5985 . . . . 5 (𝑛 = 𝑘 → ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)) = ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)))
5551, 54ifbieq1d 3602 . . . 4 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, ((𝐴 /L 𝑛)↑(𝑛 pCnt 𝑀)), 1) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
566peano2nnd 9086 . . . . 5 (𝜑 → ((abs‘𝑀) + 1) ∈ ℕ)
57 elfzuz 10178 . . . . 5 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → 𝑘 ∈ (ℤ‘((abs‘𝑀) + 1)))
58 eluznn 9756 . . . . 5 ((((abs‘𝑀) + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘((abs‘𝑀) + 1))) → 𝑘 ∈ ℕ)
5956, 57, 58syl2an 289 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → 𝑘 ∈ ℕ)
6041ad2antrr 488 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝐴 ∈ ℤ)
61 prmz 12548 . . . . . . . 8 (𝑘 ∈ ℙ → 𝑘 ∈ ℤ)
6261adantl 277 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℤ)
63 lgscl 15606 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐴 /L 𝑘) ∈ ℤ)
6460, 62, 63syl2anc 411 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℤ)
65 simpr 110 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑘 ∈ ℙ)
663ad2antrr 488 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ∈ ℤ)
674ad2antrr 488 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ≠ 0)
68 pczcl 12736 . . . . . . 7 ((𝑘 ∈ ℙ ∧ (𝑀 ∈ ℤ ∧ 𝑀 ≠ 0)) → (𝑘 pCnt 𝑀) ∈ ℕ0)
6965, 66, 67, 68syl12anc 1248 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑀) ∈ ℕ0)
70 zexpcl 10736 . . . . . 6 (((𝐴 /L 𝑘) ∈ ℤ ∧ (𝑘 pCnt 𝑀) ∈ ℕ0) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) ∈ ℤ)
7164, 69, 70syl2anc 411 . . . . 5 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) ∈ ℤ)
72 1zzd 9434 . . . . 5 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ ¬ 𝑘 ∈ ℙ) → 1 ∈ ℤ)
73 prmdc 12567 . . . . . 6 (𝑘 ∈ ℕ → DECID 𝑘 ∈ ℙ)
7459, 73syl 14 . . . . 5 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → DECID 𝑘 ∈ ℙ)
7571, 72, 74ifcldadc 3609 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) ∈ ℤ)
7642, 55, 59, 75fvmptd3 5696 . . 3 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (𝐹𝑘) = if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1))
77 zq 9782 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
7866, 77syl 14 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → 𝑀 ∈ ℚ)
79 pcabs 12764 . . . . . . . . 9 ((𝑘 ∈ ℙ ∧ 𝑀 ∈ ℚ) → (𝑘 pCnt (abs‘𝑀)) = (𝑘 pCnt 𝑀))
8065, 78, 79syl2anc 411 . . . . . . . 8 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (abs‘𝑀)) = (𝑘 pCnt 𝑀))
81 elfzle1 10184 . . . . . . . . . . . . . 14 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → ((abs‘𝑀) + 1) ≤ 𝑘)
8281adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) + 1) ≤ 𝑘)
83 elfzelz 10182 . . . . . . . . . . . . . 14 (𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁))) → 𝑘 ∈ ℤ)
84 zltp1le 9462 . . . . . . . . . . . . . 14 (((abs‘𝑀) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((abs‘𝑀) < 𝑘 ↔ ((abs‘𝑀) + 1) ≤ 𝑘))
859, 83, 84syl2an 289 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) < 𝑘 ↔ ((abs‘𝑀) + 1) ≤ 𝑘))
8682, 85mpbird 167 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (abs‘𝑀) < 𝑘)
87 zltnle 9453 . . . . . . . . . . . . 13 (((abs‘𝑀) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((abs‘𝑀) < 𝑘 ↔ ¬ 𝑘 ≤ (abs‘𝑀)))
889, 83, 87syl2an 289 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ((abs‘𝑀) < 𝑘 ↔ ¬ 𝑘 ≤ (abs‘𝑀)))
8986, 88mpbid 147 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → ¬ 𝑘 ≤ (abs‘𝑀))
9089adantr 276 . . . . . . . . . 10 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ¬ 𝑘 ≤ (abs‘𝑀))
9166, 67, 5syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (abs‘𝑀) ∈ ℕ)
92 dvdsle 12270 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ (abs‘𝑀) ∈ ℕ) → (𝑘 ∥ (abs‘𝑀) → 𝑘 ≤ (abs‘𝑀)))
9362, 91, 92syl2anc 411 . . . . . . . . . 10 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 ∥ (abs‘𝑀) → 𝑘 ≤ (abs‘𝑀)))
9490, 93mtod 665 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ¬ 𝑘 ∥ (abs‘𝑀))
95 pceq0 12760 . . . . . . . . . 10 ((𝑘 ∈ ℙ ∧ (abs‘𝑀) ∈ ℕ) → ((𝑘 pCnt (abs‘𝑀)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑀)))
9665, 91, 95syl2anc 411 . . . . . . . . 9 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝑘 pCnt (abs‘𝑀)) = 0 ↔ ¬ 𝑘 ∥ (abs‘𝑀)))
9794, 96mpbird 167 . . . . . . . 8 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt (abs‘𝑀)) = 0)
9880, 97eqtr3d 2242 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝑘 pCnt 𝑀) = 0)
9998oveq2d 5983 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) = ((𝐴 /L 𝑘)↑0))
10064zcnd 9531 . . . . . . 7 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → (𝐴 /L 𝑘) ∈ ℂ)
101100exp0d 10849 . . . . . 6 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑0) = 1)
10299, 101eqtrd 2240 . . . . 5 (((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) ∧ 𝑘 ∈ ℙ) → ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)) = 1)
103102, 74ifeq1dadc 3610 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = if(𝑘 ∈ ℙ, 1, 1))
104 ifiddc 3615 . . . . 5 (DECID 𝑘 ∈ ℙ → if(𝑘 ∈ ℙ, 1, 1) = 1)
10574, 104syl 14 . . . 4 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, 1, 1) = 1)
106103, 105eqtrd 2240 . . 3 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → if(𝑘 ∈ ℙ, ((𝐴 /L 𝑘)↑(𝑘 pCnt 𝑀)), 1) = 1)
10776, 106eqtrd 2240 . 2 ((𝜑𝑘 ∈ (((abs‘𝑀) + 1)...(abs‘(𝑀 · 𝑁)))) → (𝐹𝑘) = 1)
10844adantr 276 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝐹:ℕ⟶ℤ)
109 elnnuz 9720 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
110109biimpri 133 . . . . 5 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ)
111110adantl 277 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
112108, 111ffvelcdmd 5739 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐹𝑘) ∈ ℤ)
113112zcnd 9531 . 2 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐹𝑘) ∈ ℂ)
114 mulcl 8087 . . 3 ((𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑘 · 𝑣) ∈ ℂ)
115114adantl 277 . 2 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑘 · 𝑣) ∈ ℂ)
1162, 8, 39, 50, 107, 113, 115seq3id2 10708 1 (𝜑 → (seq1( · , 𝐹)‘(abs‘𝑀)) = (seq1( · , 𝐹)‘(abs‘(𝑀 · 𝑁))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2178  wne 2378  ifcif 3579   class class class wbr 4059  cmpt 4121  wf 5286  cfv 5290  (class class class)co 5967  cc 7958  0cc0 7960  1c1 7961   + caddc 7963   · cmul 7965   < clt 8142  cle 8143   # cap 8689  cn 9071  0cn0 9330  cz 9407  cuz 9683  cq 9775  ...cfz 10165  seqcseq 10629  cexp 10720  abscabs 11423  cdvds 12213  cprime 12544   pCnt cpc 12722   /L clgs 15589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-2o 6526  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-proddc 11977  df-dvds 12214  df-gcd 12390  df-prm 12545  df-phi 12648  df-pc 12723  df-lgs 15590
This theorem is referenced by:  lgsdi  15629
  Copyright terms: Public domain W3C validator