ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prod1dc GIF version

Theorem prod1dc 11751
Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
Assertion
Ref Expression
prod1dc (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝑀,𝑘

Proof of Theorem prod1dc
Dummy variables 𝑎 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 simp1 999 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝑀 ∈ ℤ)
3 1ap0 8617 . . . 4 1 # 0
43a1i 9 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 1 # 0)
51prodfclim1 11709 . . . 4 (𝑀 ∈ ℤ → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
62, 5syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
7 simp3 1001 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
8 eleq1w 2257 . . . . . 6 (𝑗 = 𝑎 → (𝑗𝐴𝑎𝐴))
98dcbid 839 . . . . 5 (𝑗 = 𝑎 → (DECID 𝑗𝐴DECID 𝑎𝐴))
109cbvralv 2729 . . . 4 (∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴 ↔ ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
117, 10sylib 122 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
12 simp2 1000 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝐴 ⊆ (ℤ𝑀))
13 1ex 8021 . . . . . 6 1 ∈ V
1413fvconst2 5778 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {1})‘𝑘) = 1)
1514adantl 277 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {1})‘𝑘) = 1)
16 eleq1w 2257 . . . . . . 7 (𝑎 = 𝑘 → (𝑎𝐴𝑘𝐴))
1716dcbid 839 . . . . . 6 (𝑎 = 𝑘 → (DECID 𝑎𝐴DECID 𝑘𝐴))
1811adantr 276 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
19 simpr 110 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
2017, 18, 19rspcdva 2873 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
21 ifiddc 3595 . . . . 5 (DECID 𝑘𝐴 → if(𝑘𝐴, 1, 1) = 1)
2220, 21syl 14 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 1, 1) = 1)
2315, 22eqtr4d 2232 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {1})‘𝑘) = if(𝑘𝐴, 1, 1))
24 1cnd 8042 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘𝐴) → 1 ∈ ℂ)
251, 2, 4, 6, 11, 12, 23, 24zprodap0 11746 . 2 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∏𝑘𝐴 1 = 1)
26 fz1f1o 11540 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
27 prodeq1 11718 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 1 = ∏𝑘 ∈ ∅ 1)
28 prod0 11750 . . . . 5 𝑘 ∈ ∅ 1 = 1
2927, 28eqtrdi 2245 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 1 = 1)
30 eqidd 2197 . . . . . . . . . 10 (𝑘 = (𝑓𝑗) → 1 = 1)
31 simpl 109 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
32 simpr 110 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
33 1cnd 8042 . . . . . . . . . 10 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 1 ∈ ℂ)
34 elfznn 10129 . . . . . . . . . . . 12 (𝑗 ∈ (1...(♯‘𝐴)) → 𝑗 ∈ ℕ)
3513fvconst2 5778 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((ℕ × {1})‘𝑗) = 1)
3634, 35syl 14 . . . . . . . . . . 11 (𝑗 ∈ (1...(♯‘𝐴)) → ((ℕ × {1})‘𝑗) = 1)
3736adantl 277 . . . . . . . . . 10 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑗 ∈ (1...(♯‘𝐴))) → ((ℕ × {1})‘𝑗) = 1)
3830, 31, 32, 33, 37fprodseq 11748 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)))‘(♯‘𝐴)))
39 simpr 110 . . . . . . . . . . . . . . . . 17 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → 𝑗 ≤ (♯‘𝐴))
4039iftrued 3568 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = ((ℕ × {1})‘𝑗))
4135ad2antlr 489 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → ((ℕ × {1})‘𝑗) = 1)
4240, 41eqtrd 2229 . . . . . . . . . . . . . . 15 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
43 simpr 110 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑗 ≤ (♯‘𝐴)) → ¬ 𝑗 ≤ (♯‘𝐴))
4443iffalsed 3571 . . . . . . . . . . . . . . 15 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
45 nnz 9345 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
46 nnz 9345 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℤ)
47 zdcle 9402 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑗 ≤ (♯‘𝐴))
4845, 46, 47syl2anr 290 . . . . . . . . . . . . . . . 16 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 𝑗 ≤ (♯‘𝐴))
49 exmiddc 837 . . . . . . . . . . . . . . . 16 (DECID 𝑗 ≤ (♯‘𝐴) → (𝑗 ≤ (♯‘𝐴) ∨ ¬ 𝑗 ≤ (♯‘𝐴)))
5048, 49syl 14 . . . . . . . . . . . . . . 15 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 ≤ (♯‘𝐴) ∨ ¬ 𝑗 ≤ (♯‘𝐴)))
5142, 44, 50mpjaodan 799 . . . . . . . . . . . . . 14 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
5251mpteq2dva 4123 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ → (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)) = (𝑗 ∈ ℕ ↦ 1))
53 fconstmpt 4710 . . . . . . . . . . . . 13 (ℕ × {1}) = (𝑗 ∈ ℕ ↦ 1)
5452, 53eqtr4di 2247 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ → (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)) = (ℕ × {1}))
5554seqeq3d 10547 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ → seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1))) = seq1( · , (ℕ × {1})))
5655adantr 276 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1))) = seq1( · , (ℕ × {1})))
5756fveq1d 5560 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)))‘(♯‘𝐴)) = (seq1( · , (ℕ × {1}))‘(♯‘𝐴)))
5838, 57eqtrd 2229 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = (seq1( · , (ℕ × {1}))‘(♯‘𝐴)))
59 nnuz 9637 . . . . . . . . . 10 ℕ = (ℤ‘1)
6059prodf1 11707 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
6160adantr 276 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
6258, 61eqtrd 2229 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
6362ex 115 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
6463exlimdv 1833 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
6564imp 124 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
6629, 65jaoi 717 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 1 = 1)
6726, 66syl 14 . 2 (𝐴 ∈ Fin → ∏𝑘𝐴 1 = 1)
6825, 67jaoi 717 1 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  wss 3157  c0 3450  ifcif 3561  {csn 3622   class class class wbr 4033  cmpt 4094   × cxp 4661  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922  Fincfn 6799  0cc0 7879  1c1 7880   · cmul 7884  cle 8062   # cap 8608  cn 8990  cz 9326  cuz 9601  ...cfz 10083  seqcseq 10539  chash 10867  cli 11443  cprod 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator