ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prod1dc GIF version

Theorem prod1dc 11494
Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
Assertion
Ref Expression
prod1dc (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝑀,𝑘

Proof of Theorem prod1dc
Dummy variables 𝑎 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2157 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 simp1 982 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝑀 ∈ ℤ)
3 1ap0 8469 . . . 4 1 # 0
43a1i 9 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 1 # 0)
51prodfclim1 11452 . . . 4 (𝑀 ∈ ℤ → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
62, 5syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
7 simp3 984 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
8 eleq1w 2218 . . . . . 6 (𝑗 = 𝑎 → (𝑗𝐴𝑎𝐴))
98dcbid 824 . . . . 5 (𝑗 = 𝑎 → (DECID 𝑗𝐴DECID 𝑎𝐴))
109cbvralv 2680 . . . 4 (∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴 ↔ ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
117, 10sylib 121 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
12 simp2 983 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝐴 ⊆ (ℤ𝑀))
13 1ex 7875 . . . . . 6 1 ∈ V
1413fvconst2 5685 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {1})‘𝑘) = 1)
1514adantl 275 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {1})‘𝑘) = 1)
16 eleq1w 2218 . . . . . . 7 (𝑎 = 𝑘 → (𝑎𝐴𝑘𝐴))
1716dcbid 824 . . . . . 6 (𝑎 = 𝑘 → (DECID 𝑎𝐴DECID 𝑘𝐴))
1811adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
19 simpr 109 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
2017, 18, 19rspcdva 2821 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
21 ifiddc 3539 . . . . 5 (DECID 𝑘𝐴 → if(𝑘𝐴, 1, 1) = 1)
2220, 21syl 14 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 1, 1) = 1)
2315, 22eqtr4d 2193 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {1})‘𝑘) = if(𝑘𝐴, 1, 1))
24 1cnd 7896 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘𝐴) → 1 ∈ ℂ)
251, 2, 4, 6, 11, 12, 23, 24zprodap0 11489 . 2 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∏𝑘𝐴 1 = 1)
26 fz1f1o 11283 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
27 prodeq1 11461 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 1 = ∏𝑘 ∈ ∅ 1)
28 prod0 11493 . . . . 5 𝑘 ∈ ∅ 1 = 1
2927, 28eqtrdi 2206 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 1 = 1)
30 eqidd 2158 . . . . . . . . . 10 (𝑘 = (𝑓𝑗) → 1 = 1)
31 simpl 108 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
32 simpr 109 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
33 1cnd 7896 . . . . . . . . . 10 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 1 ∈ ℂ)
34 elfznn 9962 . . . . . . . . . . . 12 (𝑗 ∈ (1...(♯‘𝐴)) → 𝑗 ∈ ℕ)
3513fvconst2 5685 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((ℕ × {1})‘𝑗) = 1)
3634, 35syl 14 . . . . . . . . . . 11 (𝑗 ∈ (1...(♯‘𝐴)) → ((ℕ × {1})‘𝑗) = 1)
3736adantl 275 . . . . . . . . . 10 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑗 ∈ (1...(♯‘𝐴))) → ((ℕ × {1})‘𝑗) = 1)
3830, 31, 32, 33, 37fprodseq 11491 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)))‘(♯‘𝐴)))
39 simpr 109 . . . . . . . . . . . . . . . . 17 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → 𝑗 ≤ (♯‘𝐴))
4039iftrued 3513 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = ((ℕ × {1})‘𝑗))
4135ad2antlr 481 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → ((ℕ × {1})‘𝑗) = 1)
4240, 41eqtrd 2190 . . . . . . . . . . . . . . 15 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
43 simpr 109 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑗 ≤ (♯‘𝐴)) → ¬ 𝑗 ≤ (♯‘𝐴))
4443iffalsed 3516 . . . . . . . . . . . . . . 15 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
45 nnz 9191 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
46 nnz 9191 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℤ)
47 zdcle 9245 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑗 ≤ (♯‘𝐴))
4845, 46, 47syl2anr 288 . . . . . . . . . . . . . . . 16 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 𝑗 ≤ (♯‘𝐴))
49 exmiddc 822 . . . . . . . . . . . . . . . 16 (DECID 𝑗 ≤ (♯‘𝐴) → (𝑗 ≤ (♯‘𝐴) ∨ ¬ 𝑗 ≤ (♯‘𝐴)))
5048, 49syl 14 . . . . . . . . . . . . . . 15 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 ≤ (♯‘𝐴) ∨ ¬ 𝑗 ≤ (♯‘𝐴)))
5142, 44, 50mpjaodan 788 . . . . . . . . . . . . . 14 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
5251mpteq2dva 4056 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ → (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)) = (𝑗 ∈ ℕ ↦ 1))
53 fconstmpt 4635 . . . . . . . . . . . . 13 (ℕ × {1}) = (𝑗 ∈ ℕ ↦ 1)
5452, 53eqtr4di 2208 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ → (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)) = (ℕ × {1}))
5554seqeq3d 10361 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ → seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1))) = seq1( · , (ℕ × {1})))
5655adantr 274 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1))) = seq1( · , (ℕ × {1})))
5756fveq1d 5472 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)))‘(♯‘𝐴)) = (seq1( · , (ℕ × {1}))‘(♯‘𝐴)))
5838, 57eqtrd 2190 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = (seq1( · , (ℕ × {1}))‘(♯‘𝐴)))
59 nnuz 9479 . . . . . . . . . 10 ℕ = (ℤ‘1)
6059prodf1 11450 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
6160adantr 274 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
6258, 61eqtrd 2190 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
6362ex 114 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
6463exlimdv 1799 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
6564imp 123 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
6629, 65jaoi 706 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 1 = 1)
6726, 66syl 14 . 2 (𝐴 ∈ Fin → ∏𝑘𝐴 1 = 1)
6825, 67jaoi 706 1 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 820  w3a 963   = wceq 1335  wex 1472  wcel 2128  wral 2435  wss 3102  c0 3395  ifcif 3506  {csn 3561   class class class wbr 3967  cmpt 4027   × cxp 4586  1-1-ontowf1o 5171  cfv 5172  (class class class)co 5826  Fincfn 6687  0cc0 7734  1c1 7735   · cmul 7739  cle 7915   # cap 8460  cn 8838  cz 9172  cuz 9444  ...cfz 9918  seqcseq 10353  chash 10660  cli 11186  cprod 11458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852  ax-arch 7853  ax-caucvg 7854
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-id 4255  df-po 4258  df-iso 4259  df-iord 4328  df-on 4330  df-ilim 4331  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-isom 5181  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-irdg 6319  df-frec 6340  df-1o 6365  df-oadd 6369  df-er 6482  df-en 6688  df-dom 6689  df-fin 6690  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550  df-inn 8839  df-2 8897  df-3 8898  df-4 8899  df-n0 9096  df-z 9173  df-uz 9445  df-q 9535  df-rp 9567  df-fz 9919  df-fzo 10051  df-seqfrec 10354  df-exp 10428  df-ihash 10661  df-cj 10753  df-re 10754  df-im 10755  df-rsqrt 10909  df-abs 10910  df-clim 11187  df-proddc 11459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator