ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prod1dc GIF version

Theorem prod1dc 11527
Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
Assertion
Ref Expression
prod1dc (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝑀,𝑘

Proof of Theorem prod1dc
Dummy variables 𝑎 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 simp1 987 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝑀 ∈ ℤ)
3 1ap0 8488 . . . 4 1 # 0
43a1i 9 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 1 # 0)
51prodfclim1 11485 . . . 4 (𝑀 ∈ ℤ → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
62, 5syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
7 simp3 989 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
8 eleq1w 2227 . . . . . 6 (𝑗 = 𝑎 → (𝑗𝐴𝑎𝐴))
98dcbid 828 . . . . 5 (𝑗 = 𝑎 → (DECID 𝑗𝐴DECID 𝑎𝐴))
109cbvralv 2692 . . . 4 (∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴 ↔ ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
117, 10sylib 121 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
12 simp2 988 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝐴 ⊆ (ℤ𝑀))
13 1ex 7894 . . . . . 6 1 ∈ V
1413fvconst2 5701 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {1})‘𝑘) = 1)
1514adantl 275 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {1})‘𝑘) = 1)
16 eleq1w 2227 . . . . . . 7 (𝑎 = 𝑘 → (𝑎𝐴𝑘𝐴))
1716dcbid 828 . . . . . 6 (𝑎 = 𝑘 → (DECID 𝑎𝐴DECID 𝑘𝐴))
1811adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
19 simpr 109 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
2017, 18, 19rspcdva 2835 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
21 ifiddc 3553 . . . . 5 (DECID 𝑘𝐴 → if(𝑘𝐴, 1, 1) = 1)
2220, 21syl 14 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 1, 1) = 1)
2315, 22eqtr4d 2201 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {1})‘𝑘) = if(𝑘𝐴, 1, 1))
24 1cnd 7915 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘𝐴) → 1 ∈ ℂ)
251, 2, 4, 6, 11, 12, 23, 24zprodap0 11522 . 2 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∏𝑘𝐴 1 = 1)
26 fz1f1o 11316 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
27 prodeq1 11494 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 1 = ∏𝑘 ∈ ∅ 1)
28 prod0 11526 . . . . 5 𝑘 ∈ ∅ 1 = 1
2927, 28eqtrdi 2215 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 1 = 1)
30 eqidd 2166 . . . . . . . . . 10 (𝑘 = (𝑓𝑗) → 1 = 1)
31 simpl 108 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
32 simpr 109 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
33 1cnd 7915 . . . . . . . . . 10 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 1 ∈ ℂ)
34 elfznn 9989 . . . . . . . . . . . 12 (𝑗 ∈ (1...(♯‘𝐴)) → 𝑗 ∈ ℕ)
3513fvconst2 5701 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((ℕ × {1})‘𝑗) = 1)
3634, 35syl 14 . . . . . . . . . . 11 (𝑗 ∈ (1...(♯‘𝐴)) → ((ℕ × {1})‘𝑗) = 1)
3736adantl 275 . . . . . . . . . 10 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑗 ∈ (1...(♯‘𝐴))) → ((ℕ × {1})‘𝑗) = 1)
3830, 31, 32, 33, 37fprodseq 11524 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)))‘(♯‘𝐴)))
39 simpr 109 . . . . . . . . . . . . . . . . 17 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → 𝑗 ≤ (♯‘𝐴))
4039iftrued 3527 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = ((ℕ × {1})‘𝑗))
4135ad2antlr 481 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → ((ℕ × {1})‘𝑗) = 1)
4240, 41eqtrd 2198 . . . . . . . . . . . . . . 15 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
43 simpr 109 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑗 ≤ (♯‘𝐴)) → ¬ 𝑗 ≤ (♯‘𝐴))
4443iffalsed 3530 . . . . . . . . . . . . . . 15 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
45 nnz 9210 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
46 nnz 9210 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℤ)
47 zdcle 9267 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑗 ≤ (♯‘𝐴))
4845, 46, 47syl2anr 288 . . . . . . . . . . . . . . . 16 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 𝑗 ≤ (♯‘𝐴))
49 exmiddc 826 . . . . . . . . . . . . . . . 16 (DECID 𝑗 ≤ (♯‘𝐴) → (𝑗 ≤ (♯‘𝐴) ∨ ¬ 𝑗 ≤ (♯‘𝐴)))
5048, 49syl 14 . . . . . . . . . . . . . . 15 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 ≤ (♯‘𝐴) ∨ ¬ 𝑗 ≤ (♯‘𝐴)))
5142, 44, 50mpjaodan 788 . . . . . . . . . . . . . 14 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
5251mpteq2dva 4072 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ → (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)) = (𝑗 ∈ ℕ ↦ 1))
53 fconstmpt 4651 . . . . . . . . . . . . 13 (ℕ × {1}) = (𝑗 ∈ ℕ ↦ 1)
5452, 53eqtr4di 2217 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ → (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)) = (ℕ × {1}))
5554seqeq3d 10388 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ → seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1))) = seq1( · , (ℕ × {1})))
5655adantr 274 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1))) = seq1( · , (ℕ × {1})))
5756fveq1d 5488 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)))‘(♯‘𝐴)) = (seq1( · , (ℕ × {1}))‘(♯‘𝐴)))
5838, 57eqtrd 2198 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = (seq1( · , (ℕ × {1}))‘(♯‘𝐴)))
59 nnuz 9501 . . . . . . . . . 10 ℕ = (ℤ‘1)
6059prodf1 11483 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
6160adantr 274 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
6258, 61eqtrd 2198 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
6362ex 114 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
6463exlimdv 1807 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
6564imp 123 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
6629, 65jaoi 706 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 1 = 1)
6726, 66syl 14 . 2 (𝐴 ∈ Fin → ∏𝑘𝐴 1 = 1)
6825, 67jaoi 706 1 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824  w3a 968   = wceq 1343  wex 1480  wcel 2136  wral 2444  wss 3116  c0 3409  ifcif 3520  {csn 3576   class class class wbr 3982  cmpt 4043   × cxp 4602  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  Fincfn 6706  0cc0 7753  1c1 7754   · cmul 7758  cle 7934   # cap 8479  cn 8857  cz 9191  cuz 9466  ...cfz 9944  seqcseq 10380  chash 10688  cli 11219  cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator