ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prod1dc GIF version

Theorem prod1dc 12092
Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
Assertion
Ref Expression
prod1dc (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝑀,𝑘

Proof of Theorem prod1dc
Dummy variables 𝑎 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 simp1 1021 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝑀 ∈ ℤ)
3 1ap0 8733 . . . 4 1 # 0
43a1i 9 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 1 # 0)
51prodfclim1 12050 . . . 4 (𝑀 ∈ ℤ → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
62, 5syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
7 simp3 1023 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
8 eleq1w 2290 . . . . . 6 (𝑗 = 𝑎 → (𝑗𝐴𝑎𝐴))
98dcbid 843 . . . . 5 (𝑗 = 𝑎 → (DECID 𝑗𝐴DECID 𝑎𝐴))
109cbvralv 2765 . . . 4 (∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴 ↔ ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
117, 10sylib 122 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
12 simp2 1022 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝐴 ⊆ (ℤ𝑀))
13 1ex 8137 . . . . . 6 1 ∈ V
1413fvconst2 5854 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {1})‘𝑘) = 1)
1514adantl 277 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {1})‘𝑘) = 1)
16 eleq1w 2290 . . . . . . 7 (𝑎 = 𝑘 → (𝑎𝐴𝑘𝐴))
1716dcbid 843 . . . . . 6 (𝑎 = 𝑘 → (DECID 𝑎𝐴DECID 𝑘𝐴))
1811adantr 276 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
19 simpr 110 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
2017, 18, 19rspcdva 2912 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
21 ifiddc 3638 . . . . 5 (DECID 𝑘𝐴 → if(𝑘𝐴, 1, 1) = 1)
2220, 21syl 14 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 1, 1) = 1)
2315, 22eqtr4d 2265 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {1})‘𝑘) = if(𝑘𝐴, 1, 1))
24 1cnd 8158 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘𝐴) → 1 ∈ ℂ)
251, 2, 4, 6, 11, 12, 23, 24zprodap0 12087 . 2 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∏𝑘𝐴 1 = 1)
26 fz1f1o 11881 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
27 prodeq1 12059 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 1 = ∏𝑘 ∈ ∅ 1)
28 prod0 12091 . . . . 5 𝑘 ∈ ∅ 1 = 1
2927, 28eqtrdi 2278 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 1 = 1)
30 eqidd 2230 . . . . . . . . . 10 (𝑘 = (𝑓𝑗) → 1 = 1)
31 simpl 109 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
32 simpr 110 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
33 1cnd 8158 . . . . . . . . . 10 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 1 ∈ ℂ)
34 elfznn 10246 . . . . . . . . . . . 12 (𝑗 ∈ (1...(♯‘𝐴)) → 𝑗 ∈ ℕ)
3513fvconst2 5854 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((ℕ × {1})‘𝑗) = 1)
3634, 35syl 14 . . . . . . . . . . 11 (𝑗 ∈ (1...(♯‘𝐴)) → ((ℕ × {1})‘𝑗) = 1)
3736adantl 277 . . . . . . . . . 10 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑗 ∈ (1...(♯‘𝐴))) → ((ℕ × {1})‘𝑗) = 1)
3830, 31, 32, 33, 37fprodseq 12089 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)))‘(♯‘𝐴)))
39 simpr 110 . . . . . . . . . . . . . . . . 17 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → 𝑗 ≤ (♯‘𝐴))
4039iftrued 3609 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = ((ℕ × {1})‘𝑗))
4135ad2antlr 489 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → ((ℕ × {1})‘𝑗) = 1)
4240, 41eqtrd 2262 . . . . . . . . . . . . . . 15 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
43 simpr 110 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑗 ≤ (♯‘𝐴)) → ¬ 𝑗 ≤ (♯‘𝐴))
4443iffalsed 3612 . . . . . . . . . . . . . . 15 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
45 nnz 9461 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
46 nnz 9461 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℤ)
47 zdcle 9519 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑗 ≤ (♯‘𝐴))
4845, 46, 47syl2anr 290 . . . . . . . . . . . . . . . 16 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 𝑗 ≤ (♯‘𝐴))
49 exmiddc 841 . . . . . . . . . . . . . . . 16 (DECID 𝑗 ≤ (♯‘𝐴) → (𝑗 ≤ (♯‘𝐴) ∨ ¬ 𝑗 ≤ (♯‘𝐴)))
5048, 49syl 14 . . . . . . . . . . . . . . 15 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 ≤ (♯‘𝐴) ∨ ¬ 𝑗 ≤ (♯‘𝐴)))
5142, 44, 50mpjaodan 803 . . . . . . . . . . . . . 14 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
5251mpteq2dva 4173 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ → (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)) = (𝑗 ∈ ℕ ↦ 1))
53 fconstmpt 4765 . . . . . . . . . . . . 13 (ℕ × {1}) = (𝑗 ∈ ℕ ↦ 1)
5452, 53eqtr4di 2280 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ → (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)) = (ℕ × {1}))
5554seqeq3d 10672 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ → seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1))) = seq1( · , (ℕ × {1})))
5655adantr 276 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1))) = seq1( · , (ℕ × {1})))
5756fveq1d 5628 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)))‘(♯‘𝐴)) = (seq1( · , (ℕ × {1}))‘(♯‘𝐴)))
5838, 57eqtrd 2262 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = (seq1( · , (ℕ × {1}))‘(♯‘𝐴)))
59 nnuz 9754 . . . . . . . . . 10 ℕ = (ℤ‘1)
6059prodf1 12048 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
6160adantr 276 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
6258, 61eqtrd 2262 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
6362ex 115 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
6463exlimdv 1865 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
6564imp 124 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
6629, 65jaoi 721 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 1 = 1)
6726, 66syl 14 . 2 (𝐴 ∈ Fin → ∏𝑘𝐴 1 = 1)
6825, 67jaoi 721 1 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  wss 3197  c0 3491  ifcif 3602  {csn 3666   class class class wbr 4082  cmpt 4144   × cxp 4716  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  Fincfn 6885  0cc0 7995  1c1 7996   · cmul 8000  cle 8178   # cap 8724  cn 9106  cz 9442  cuz 9718  ...cfz 10200  seqcseq 10664  chash 10992  cli 11784  cprod 12056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-proddc 12057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator