ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prod1dc GIF version

Theorem prod1dc 11972
Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
Assertion
Ref Expression
prod1dc (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝑀,𝑘

Proof of Theorem prod1dc
Dummy variables 𝑎 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 simp1 1000 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝑀 ∈ ℤ)
3 1ap0 8683 . . . 4 1 # 0
43a1i 9 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 1 # 0)
51prodfclim1 11930 . . . 4 (𝑀 ∈ ℤ → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
62, 5syl 14 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
7 simp3 1002 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
8 eleq1w 2267 . . . . . 6 (𝑗 = 𝑎 → (𝑗𝐴𝑎𝐴))
98dcbid 840 . . . . 5 (𝑗 = 𝑎 → (DECID 𝑗𝐴DECID 𝑎𝐴))
109cbvralv 2739 . . . 4 (∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴 ↔ ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
117, 10sylib 122 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
12 simp2 1001 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝐴 ⊆ (ℤ𝑀))
13 1ex 8087 . . . . . 6 1 ∈ V
1413fvconst2 5813 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {1})‘𝑘) = 1)
1514adantl 277 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {1})‘𝑘) = 1)
16 eleq1w 2267 . . . . . . 7 (𝑎 = 𝑘 → (𝑎𝐴𝑘𝐴))
1716dcbid 840 . . . . . 6 (𝑎 = 𝑘 → (DECID 𝑎𝐴DECID 𝑘𝐴))
1811adantr 276 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
19 simpr 110 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
2017, 18, 19rspcdva 2886 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
21 ifiddc 3611 . . . . 5 (DECID 𝑘𝐴 → if(𝑘𝐴, 1, 1) = 1)
2220, 21syl 14 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 1, 1) = 1)
2315, 22eqtr4d 2242 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {1})‘𝑘) = if(𝑘𝐴, 1, 1))
24 1cnd 8108 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘𝐴) → 1 ∈ ℂ)
251, 2, 4, 6, 11, 12, 23, 24zprodap0 11967 . 2 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∏𝑘𝐴 1 = 1)
26 fz1f1o 11761 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
27 prodeq1 11939 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 1 = ∏𝑘 ∈ ∅ 1)
28 prod0 11971 . . . . 5 𝑘 ∈ ∅ 1 = 1
2927, 28eqtrdi 2255 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 1 = 1)
30 eqidd 2207 . . . . . . . . . 10 (𝑘 = (𝑓𝑗) → 1 = 1)
31 simpl 109 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
32 simpr 110 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
33 1cnd 8108 . . . . . . . . . 10 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 1 ∈ ℂ)
34 elfznn 10196 . . . . . . . . . . . 12 (𝑗 ∈ (1...(♯‘𝐴)) → 𝑗 ∈ ℕ)
3513fvconst2 5813 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((ℕ × {1})‘𝑗) = 1)
3634, 35syl 14 . . . . . . . . . . 11 (𝑗 ∈ (1...(♯‘𝐴)) → ((ℕ × {1})‘𝑗) = 1)
3736adantl 277 . . . . . . . . . 10 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑗 ∈ (1...(♯‘𝐴))) → ((ℕ × {1})‘𝑗) = 1)
3830, 31, 32, 33, 37fprodseq 11969 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)))‘(♯‘𝐴)))
39 simpr 110 . . . . . . . . . . . . . . . . 17 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → 𝑗 ≤ (♯‘𝐴))
4039iftrued 3582 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = ((ℕ × {1})‘𝑗))
4135ad2antlr 489 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → ((ℕ × {1})‘𝑗) = 1)
4240, 41eqtrd 2239 . . . . . . . . . . . . . . 15 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
43 simpr 110 . . . . . . . . . . . . . . . 16 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑗 ≤ (♯‘𝐴)) → ¬ 𝑗 ≤ (♯‘𝐴))
4443iffalsed 3585 . . . . . . . . . . . . . . 15 ((((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ ¬ 𝑗 ≤ (♯‘𝐴)) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
45 nnz 9411 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
46 nnz 9411 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ∈ ℤ)
47 zdcle 9469 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑗 ≤ (♯‘𝐴))
4845, 46, 47syl2anr 290 . . . . . . . . . . . . . . . 16 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → DECID 𝑗 ≤ (♯‘𝐴))
49 exmiddc 838 . . . . . . . . . . . . . . . 16 (DECID 𝑗 ≤ (♯‘𝐴) → (𝑗 ≤ (♯‘𝐴) ∨ ¬ 𝑗 ≤ (♯‘𝐴)))
5048, 49syl 14 . . . . . . . . . . . . . . 15 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 ≤ (♯‘𝐴) ∨ ¬ 𝑗 ≤ (♯‘𝐴)))
5142, 44, 50mpjaodan 800 . . . . . . . . . . . . . 14 (((♯‘𝐴) ∈ ℕ ∧ 𝑗 ∈ ℕ) → if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1) = 1)
5251mpteq2dva 4142 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ → (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)) = (𝑗 ∈ ℕ ↦ 1))
53 fconstmpt 4730 . . . . . . . . . . . . 13 (ℕ × {1}) = (𝑗 ∈ ℕ ↦ 1)
5452, 53eqtr4di 2257 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ → (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)) = (ℕ × {1}))
5554seqeq3d 10622 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ → seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1))) = seq1( · , (ℕ × {1})))
5655adantr 276 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1))) = seq1( · , (ℕ × {1})))
5756fveq1d 5591 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( · , (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), ((ℕ × {1})‘𝑗), 1)))‘(♯‘𝐴)) = (seq1( · , (ℕ × {1}))‘(♯‘𝐴)))
5838, 57eqtrd 2239 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = (seq1( · , (ℕ × {1}))‘(♯‘𝐴)))
59 nnuz 9704 . . . . . . . . . 10 ℕ = (ℤ‘1)
6059prodf1 11928 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
6160adantr 276 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
6258, 61eqtrd 2239 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
6362ex 115 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
6463exlimdv 1843 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
6564imp 124 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
6629, 65jaoi 718 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 1 = 1)
6726, 66syl 14 . 2 (𝐴 ∈ Fin → ∏𝑘𝐴 1 = 1)
6825, 67jaoi 718 1 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  wss 3170  c0 3464  ifcif 3575  {csn 3638   class class class wbr 4051  cmpt 4113   × cxp 4681  1-1-ontowf1o 5279  cfv 5280  (class class class)co 5957  Fincfn 6840  0cc0 7945  1c1 7946   · cmul 7950  cle 8128   # cap 8674  cn 9056  cz 9392  cuz 9668  ...cfz 10150  seqcseq 10614  chash 10942  cli 11664  cprod 11936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-proddc 11937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator