![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xaddpnf1 | GIF version |
Description: Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddpnf1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 8012 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | xaddval 9847 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))))) | |
3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))))) |
4 | 3 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))))) |
5 | pnfnemnf 8014 | . . . . 5 ⊢ +∞ ≠ -∞ | |
6 | ifnefalse 3547 | . . . . 5 ⊢ (+∞ ≠ -∞ → if(+∞ = -∞, 0, +∞) = +∞) | |
7 | 5, 6 | mp1i 10 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(+∞ = -∞, 0, +∞) = +∞) |
8 | ifnefalse 3547 | . . . . 5 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) = if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) | |
9 | eqid 2177 | . . . . . 6 ⊢ +∞ = +∞ | |
10 | 9 | iftruei 3542 | . . . . 5 ⊢ if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))) = +∞ |
11 | 8, 10 | eqtrdi 2226 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) = +∞) |
12 | 7, 11 | ifeq12d 3555 | . . 3 ⊢ (𝐴 ≠ -∞ → if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))) = if(𝐴 = +∞, +∞, +∞)) |
13 | xrpnfdc 9844 | . . . 4 ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) | |
14 | ifiddc 3570 | . . . 4 ⊢ (DECID 𝐴 = +∞ → if(𝐴 = +∞, +∞, +∞) = +∞) | |
15 | 13, 14 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ* → if(𝐴 = +∞, +∞, +∞) = +∞) |
16 | 12, 15 | sylan9eqr 2232 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))) = +∞) |
17 | 4, 16 | eqtrd 2210 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 ifcif 3536 (class class class)co 5877 0cc0 7813 + caddc 7816 +∞cpnf 7991 -∞cmnf 7992 ℝ*cxr 7993 +𝑒 cxad 9772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 ax-rnegex 7922 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-xadd 9775 |
This theorem is referenced by: xaddnemnf 9859 xaddcom 9863 xnn0xadd0 9869 xnegdi 9870 xaddass 9871 xleadd1a 9875 xlt2add 9882 xsubge0 9883 xposdif 9884 xlesubadd 9885 xrbdtri 11286 isxmet2d 13933 |
Copyright terms: Public domain | W3C validator |