| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddpnf1 | GIF version | ||
| Description: Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddpnf1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 8145 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 2 | xaddval 9987 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))))) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))))) |
| 4 | 3 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))))) |
| 5 | pnfnemnf 8147 | . . . . 5 ⊢ +∞ ≠ -∞ | |
| 6 | ifnefalse 3586 | . . . . 5 ⊢ (+∞ ≠ -∞ → if(+∞ = -∞, 0, +∞) = +∞) | |
| 7 | 5, 6 | mp1i 10 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(+∞ = -∞, 0, +∞) = +∞) |
| 8 | ifnefalse 3586 | . . . . 5 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) = if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) | |
| 9 | eqid 2206 | . . . . . 6 ⊢ +∞ = +∞ | |
| 10 | 9 | iftruei 3581 | . . . . 5 ⊢ if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))) = +∞ |
| 11 | 8, 10 | eqtrdi 2255 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) = +∞) |
| 12 | 7, 11 | ifeq12d 3595 | . . 3 ⊢ (𝐴 ≠ -∞ → if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))) = if(𝐴 = +∞, +∞, +∞)) |
| 13 | xrpnfdc 9984 | . . . 4 ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) | |
| 14 | ifiddc 3611 | . . . 4 ⊢ (DECID 𝐴 = +∞ → if(𝐴 = +∞, +∞, +∞) = +∞) | |
| 15 | 13, 14 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ* → if(𝐴 = +∞, +∞, +∞) = +∞) |
| 16 | 12, 15 | sylan9eqr 2261 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))) = +∞) |
| 17 | 4, 16 | eqtrd 2239 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ifcif 3575 (class class class)co 5957 0cc0 7945 + caddc 7948 +∞cpnf 8124 -∞cmnf 8125 ℝ*cxr 8126 +𝑒 cxad 9912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 ax-rnegex 8054 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-xadd 9915 |
| This theorem is referenced by: xaddnemnf 9999 xaddcom 10003 xnn0xadd0 10009 xnegdi 10010 xaddass 10011 xleadd1a 10015 xlt2add 10022 xsubge0 10023 xposdif 10024 xlesubadd 10025 xrbdtri 11662 isxmet2d 14895 |
| Copyright terms: Public domain | W3C validator |