| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddpnf1 | GIF version | ||
| Description: Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddpnf1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr 8195 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 2 | xaddval 10037 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))))) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))))) |
| 4 | 3 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))))) |
| 5 | pnfnemnf 8197 | . . . . 5 ⊢ +∞ ≠ -∞ | |
| 6 | ifnefalse 3613 | . . . . 5 ⊢ (+∞ ≠ -∞ → if(+∞ = -∞, 0, +∞) = +∞) | |
| 7 | 5, 6 | mp1i 10 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(+∞ = -∞, 0, +∞) = +∞) |
| 8 | ifnefalse 3613 | . . . . 5 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) = if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) | |
| 9 | eqid 2229 | . . . . . 6 ⊢ +∞ = +∞ | |
| 10 | 9 | iftruei 3608 | . . . . 5 ⊢ if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))) = +∞ |
| 11 | 8, 10 | eqtrdi 2278 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) = +∞) |
| 12 | 7, 11 | ifeq12d 3622 | . . 3 ⊢ (𝐴 ≠ -∞ → if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))) = if(𝐴 = +∞, +∞, +∞)) |
| 13 | xrpnfdc 10034 | . . . 4 ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) | |
| 14 | ifiddc 3638 | . . . 4 ⊢ (DECID 𝐴 = +∞ → if(𝐴 = +∞, +∞, +∞) = +∞) | |
| 15 | 13, 14 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ* → if(𝐴 = +∞, +∞, +∞) = +∞) |
| 16 | 12, 15 | sylan9eqr 2284 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))) = +∞) |
| 17 | 4, 16 | eqtrd 2262 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ifcif 3602 (class class class)co 6000 0cc0 7995 + caddc 7998 +∞cpnf 8174 -∞cmnf 8175 ℝ*cxr 8176 +𝑒 cxad 9962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-xadd 9965 |
| This theorem is referenced by: xaddnemnf 10049 xaddcom 10053 xnn0xadd0 10059 xnegdi 10060 xaddass 10061 xleadd1a 10065 xlt2add 10072 xsubge0 10073 xposdif 10074 xlesubadd 10075 xrbdtri 11782 isxmet2d 15016 |
| Copyright terms: Public domain | W3C validator |