Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xaddpnf1 | GIF version |
Description: Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddpnf1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 7951 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | xaddval 9781 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))))) | |
3 | 1, 2 | mpan2 422 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))))) |
4 | 3 | adantr 274 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))))) |
5 | pnfnemnf 7953 | . . . . 5 ⊢ +∞ ≠ -∞ | |
6 | ifnefalse 3531 | . . . . 5 ⊢ (+∞ ≠ -∞ → if(+∞ = -∞, 0, +∞) = +∞) | |
7 | 5, 6 | mp1i 10 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(+∞ = -∞, 0, +∞) = +∞) |
8 | ifnefalse 3531 | . . . . 5 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) = if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) | |
9 | eqid 2165 | . . . . . 6 ⊢ +∞ = +∞ | |
10 | 9 | iftruei 3526 | . . . . 5 ⊢ if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))) = +∞ |
11 | 8, 10 | eqtrdi 2215 | . . . 4 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) = +∞) |
12 | 7, 11 | ifeq12d 3539 | . . 3 ⊢ (𝐴 ≠ -∞ → if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))) = if(𝐴 = +∞, +∞, +∞)) |
13 | xrpnfdc 9778 | . . . 4 ⊢ (𝐴 ∈ ℝ* → DECID 𝐴 = +∞) | |
14 | ifiddc 3553 | . . . 4 ⊢ (DECID 𝐴 = +∞ → if(𝐴 = +∞, +∞, +∞) = +∞) | |
15 | 13, 14 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ* → if(𝐴 = +∞, +∞, +∞) = +∞) |
16 | 12, 15 | sylan9eqr 2221 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))) = +∞) |
17 | 4, 16 | eqtrd 2198 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 ifcif 3520 (class class class)co 5842 0cc0 7753 + caddc 7756 +∞cpnf 7930 -∞cmnf 7931 ℝ*cxr 7932 +𝑒 cxad 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-xadd 9709 |
This theorem is referenced by: xaddnemnf 9793 xaddcom 9797 xnn0xadd0 9803 xnegdi 9804 xaddass 9805 xleadd1a 9809 xlt2add 9816 xsubge0 9817 xposdif 9818 xlesubadd 9819 xrbdtri 11217 isxmet2d 12988 |
Copyright terms: Public domain | W3C validator |