ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddpnf1 GIF version

Theorem xaddpnf1 9938
Description: Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddpnf1 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)

Proof of Theorem xaddpnf1
StepHypRef Expression
1 pnfxr 8096 . . . 4 +∞ ∈ ℝ*
2 xaddval 9937 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))))
31, 2mpan2 425 . . 3 (𝐴 ∈ ℝ* → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))))
43adantr 276 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))))
5 pnfnemnf 8098 . . . . 5 +∞ ≠ -∞
6 ifnefalse 3573 . . . . 5 (+∞ ≠ -∞ → if(+∞ = -∞, 0, +∞) = +∞)
75, 6mp1i 10 . . . 4 (𝐴 ≠ -∞ → if(+∞ = -∞, 0, +∞) = +∞)
8 ifnefalse 3573 . . . . 5 (𝐴 ≠ -∞ → if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) = if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))
9 eqid 2196 . . . . . 6 +∞ = +∞
109iftruei 3568 . . . . 5 if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))) = +∞
118, 10eqtrdi 2245 . . . 4 (𝐴 ≠ -∞ → if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞)))) = +∞)
127, 11ifeq12d 3581 . . 3 (𝐴 ≠ -∞ → if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))) = if(𝐴 = +∞, +∞, +∞))
13 xrpnfdc 9934 . . . 4 (𝐴 ∈ ℝ*DECID 𝐴 = +∞)
14 ifiddc 3596 . . . 4 (DECID 𝐴 = +∞ → if(𝐴 = +∞, +∞, +∞) = +∞)
1513, 14syl 14 . . 3 (𝐴 ∈ ℝ* → if(𝐴 = +∞, +∞, +∞) = +∞)
1612, 15sylan9eqr 2251 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → if(𝐴 = +∞, if(+∞ = -∞, 0, +∞), if(𝐴 = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (𝐴 + +∞))))) = +∞)
174, 16eqtrd 2229 1 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  ifcif 3562  (class class class)co 5925  0cc0 7896   + caddc 7899  +∞cpnf 8075  -∞cmnf 8076  *cxr 8077   +𝑒 cxad 9862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993  ax-rnegex 8005
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-xadd 9865
This theorem is referenced by:  xaddnemnf  9949  xaddcom  9953  xnn0xadd0  9959  xnegdi  9960  xaddass  9961  xleadd1a  9965  xlt2add  9972  xsubge0  9973  xposdif  9974  xlesubadd  9975  xrbdtri  11458  isxmet2d  14668
  Copyright terms: Public domain W3C validator