Proof of Theorem 1arithlem4
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 1arithlem4.2 | 
. . . . 5
⊢ 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹‘𝑦)), 1)) | 
| 2 |   | 1arithlem4.3 | 
. . . . . . 7
⊢ (𝜑 → 𝐹:ℙ⟶ℕ0) | 
| 3 | 2 | ffvelcdmda 5697 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℙ) → (𝐹‘𝑦) ∈
ℕ0) | 
| 4 | 3 | ralrimiva 2570 | 
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ ℙ (𝐹‘𝑦) ∈
ℕ0) | 
| 5 | 1, 4 | pcmptcl 12511 | 
. . . 4
⊢ (𝜑 → (𝐺:ℕ⟶ℕ ∧ seq1( ·
, 𝐺):ℕ⟶ℕ)) | 
| 6 | 5 | simprd 114 | 
. . 3
⊢ (𝜑 → seq1( · , 𝐺):ℕ⟶ℕ) | 
| 7 |   | 1arithlem4.4 | 
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 8 | 6, 7 | ffvelcdmd 5698 | 
. 2
⊢ (𝜑 → (seq1( · , 𝐺)‘𝑁) ∈ ℕ) | 
| 9 |   | 1arith.1 | 
. . . . . . 7
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛))) | 
| 10 | 9 | 1arithlem2 12533 | 
. . . . . 6
⊢ (((seq1(
· , 𝐺)‘𝑁) ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁))) | 
| 11 | 8, 10 | sylan 283 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁))) | 
| 12 | 4 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → ∀𝑦 ∈ ℙ (𝐹‘𝑦) ∈
ℕ0) | 
| 13 | 7 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℕ) | 
| 14 |   | simpr 110 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ) | 
| 15 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑦 = 𝑞 → (𝐹‘𝑦) = (𝐹‘𝑞)) | 
| 16 | 1, 12, 13, 14, 15 | pcmpt 12512 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (seq1( · , 𝐺)‘𝑁)) = if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0)) | 
| 17 |   | 1arithlem4.5 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁 ≤ 𝑞)) → (𝐹‘𝑞) = 0) | 
| 18 | 17 | anassrs 400 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → (𝐹‘𝑞) = 0) | 
| 19 | 18 | ifeq2d 3579 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), (𝐹‘𝑞)) = if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0)) | 
| 20 |   | prmz 12279 | 
. . . . . . . . . . 11
⊢ (𝑞 ∈ ℙ → 𝑞 ∈
ℤ) | 
| 21 | 20 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℤ) | 
| 22 | 13 | nnzd 9447 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℤ) | 
| 23 |   | zdcle 9402 | 
. . . . . . . . . 10
⊢ ((𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑞 ≤
𝑁) | 
| 24 | 21, 22, 23 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → DECID
𝑞 ≤ 𝑁) | 
| 25 |   | ifiddc 3595 | 
. . . . . . . . 9
⊢
(DECID 𝑞 ≤ 𝑁 → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), (𝐹‘𝑞)) = (𝐹‘𝑞)) | 
| 26 | 24, 25 | syl 14 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), (𝐹‘𝑞)) = (𝐹‘𝑞)) | 
| 27 | 26 | adantr 276 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), (𝐹‘𝑞)) = (𝐹‘𝑞)) | 
| 28 | 19, 27 | eqtr3d 2231 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑁 ≤ 𝑞) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) | 
| 29 |   | iftrue 3566 | 
. . . . . . 7
⊢ (𝑞 ≤ 𝑁 → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) | 
| 30 | 29 | adantl 277 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ≤ 𝑁) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) | 
| 31 |   | zletric 9370 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑁 ≤ 𝑞 ∨ 𝑞 ≤ 𝑁)) | 
| 32 | 22, 21, 31 | syl2anc 411 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (𝑁 ≤ 𝑞 ∨ 𝑞 ≤ 𝑁)) | 
| 33 | 28, 30, 32 | mpjaodan 799 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → if(𝑞 ≤ 𝑁, (𝐹‘𝑞), 0) = (𝐹‘𝑞)) | 
| 34 | 11, 16, 33 | 3eqtrrd 2234 | 
. . . 4
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)) | 
| 35 | 34 | ralrimiva 2570 | 
. . 3
⊢ (𝜑 → ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)) | 
| 36 | 9 | 1arithlem3 12534 | 
. . . . 5
⊢ ((seq1(
· , 𝐺)‘𝑁) ∈ ℕ → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) | 
| 37 | 8, 36 | syl 14 | 
. . . 4
⊢ (𝜑 → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) | 
| 38 |   | ffn 5407 | 
. . . . 5
⊢ (𝐹:ℙ⟶ℕ0 →
𝐹 Fn
ℙ) | 
| 39 |   | ffn 5407 | 
. . . . 5
⊢ ((𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0 →
(𝑀‘(seq1( · ,
𝐺)‘𝑁)) Fn ℙ) | 
| 40 |   | eqfnfv 5659 | 
. . . . 5
⊢ ((𝐹 Fn ℙ ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) | 
| 41 | 38, 39, 40 | syl2an 289 | 
. . . 4
⊢ ((𝐹:ℙ⟶ℕ0 ∧
(𝑀‘(seq1( · ,
𝐺)‘𝑁)):ℙ⟶ℕ0)
→ (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) | 
| 42 | 2, 37, 41 | syl2anc 411 | 
. . 3
⊢ (𝜑 → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹‘𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))) | 
| 43 | 35, 42 | mpbird 167 | 
. 2
⊢ (𝜑 → 𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁))) | 
| 44 |   | fveq2 5558 | 
. . 3
⊢ (𝑥 = (seq1( · , 𝐺)‘𝑁) → (𝑀‘𝑥) = (𝑀‘(seq1( · , 𝐺)‘𝑁))) | 
| 45 | 44 | rspceeqv 2886 | 
. 2
⊢ (((seq1(
· , 𝐺)‘𝑁) ∈ ℕ ∧ 𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁))) → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) | 
| 46 | 8, 43, 45 | syl2anc 411 | 
1
⊢ (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀‘𝑥)) |