ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1arithlem4 GIF version

Theorem 1arithlem4 12311
Description: Lemma for 1arith 12312. (Contributed by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1arithlem4.2 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹𝑦)), 1))
1arithlem4.3 (𝜑𝐹:ℙ⟶ℕ0)
1arithlem4.4 (𝜑𝑁 ∈ ℕ)
1arithlem4.5 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁𝑞)) → (𝐹𝑞) = 0)
Assertion
Ref Expression
1arithlem4 (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀𝑥))
Distinct variable groups:   𝑛,𝑝,𝑞,𝑥,𝑦   𝐹,𝑞,𝑥,𝑦   𝑀,𝑞,𝑥,𝑦   𝜑,𝑞,𝑦   𝑛,𝐺,𝑝,𝑞,𝑥   𝑛,𝑁,𝑝,𝑞,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑝)   𝐹(𝑛,𝑝)   𝐺(𝑦)   𝑀(𝑛,𝑝)   𝑁(𝑦)

Proof of Theorem 1arithlem4
StepHypRef Expression
1 1arithlem4.2 . . . . 5 𝐺 = (𝑦 ∈ ℕ ↦ if(𝑦 ∈ ℙ, (𝑦↑(𝐹𝑦)), 1))
2 1arithlem4.3 . . . . . . 7 (𝜑𝐹:ℙ⟶ℕ0)
32ffvelrnda 5629 . . . . . 6 ((𝜑𝑦 ∈ ℙ) → (𝐹𝑦) ∈ ℕ0)
43ralrimiva 2543 . . . . 5 (𝜑 → ∀𝑦 ∈ ℙ (𝐹𝑦) ∈ ℕ0)
51, 4pcmptcl 12287 . . . 4 (𝜑 → (𝐺:ℕ⟶ℕ ∧ seq1( · , 𝐺):ℕ⟶ℕ))
65simprd 113 . . 3 (𝜑 → seq1( · , 𝐺):ℕ⟶ℕ)
7 1arithlem4.4 . . 3 (𝜑𝑁 ∈ ℕ)
86, 7ffvelrnd 5630 . 2 (𝜑 → (seq1( · , 𝐺)‘𝑁) ∈ ℕ)
9 1arith.1 . . . . . . 7 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1091arithlem2 12309 . . . . . 6 (((seq1( · , 𝐺)‘𝑁) ∈ ℕ ∧ 𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁)))
118, 10sylan 281 . . . . 5 ((𝜑𝑞 ∈ ℙ) → ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞) = (𝑞 pCnt (seq1( · , 𝐺)‘𝑁)))
124adantr 274 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → ∀𝑦 ∈ ℙ (𝐹𝑦) ∈ ℕ0)
137adantr 274 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → 𝑁 ∈ ℕ)
14 simpr 109 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
15 fveq2 5494 . . . . . 6 (𝑦 = 𝑞 → (𝐹𝑦) = (𝐹𝑞))
161, 12, 13, 14, 15pcmpt 12288 . . . . 5 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (seq1( · , 𝐺)‘𝑁)) = if(𝑞𝑁, (𝐹𝑞), 0))
17 1arithlem4.5 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑁𝑞)) → (𝐹𝑞) = 0)
1817anassrs 398 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑁𝑞) → (𝐹𝑞) = 0)
1918ifeq2d 3543 . . . . . . 7 (((𝜑𝑞 ∈ ℙ) ∧ 𝑁𝑞) → if(𝑞𝑁, (𝐹𝑞), (𝐹𝑞)) = if(𝑞𝑁, (𝐹𝑞), 0))
20 prmz 12058 . . . . . . . . . . 11 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
2120adantl 275 . . . . . . . . . 10 ((𝜑𝑞 ∈ ℙ) → 𝑞 ∈ ℤ)
2213nnzd 9326 . . . . . . . . . 10 ((𝜑𝑞 ∈ ℙ) → 𝑁 ∈ ℤ)
23 zdcle 9281 . . . . . . . . . 10 ((𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑞𝑁)
2421, 22, 23syl2anc 409 . . . . . . . . 9 ((𝜑𝑞 ∈ ℙ) → DECID 𝑞𝑁)
25 ifiddc 3558 . . . . . . . . 9 (DECID 𝑞𝑁 → if(𝑞𝑁, (𝐹𝑞), (𝐹𝑞)) = (𝐹𝑞))
2624, 25syl 14 . . . . . . . 8 ((𝜑𝑞 ∈ ℙ) → if(𝑞𝑁, (𝐹𝑞), (𝐹𝑞)) = (𝐹𝑞))
2726adantr 274 . . . . . . 7 (((𝜑𝑞 ∈ ℙ) ∧ 𝑁𝑞) → if(𝑞𝑁, (𝐹𝑞), (𝐹𝑞)) = (𝐹𝑞))
2819, 27eqtr3d 2205 . . . . . 6 (((𝜑𝑞 ∈ ℙ) ∧ 𝑁𝑞) → if(𝑞𝑁, (𝐹𝑞), 0) = (𝐹𝑞))
29 iftrue 3530 . . . . . . 7 (𝑞𝑁 → if(𝑞𝑁, (𝐹𝑞), 0) = (𝐹𝑞))
3029adantl 275 . . . . . 6 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝑁) → if(𝑞𝑁, (𝐹𝑞), 0) = (𝐹𝑞))
31 zletric 9249 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑁𝑞𝑞𝑁))
3222, 21, 31syl2anc 409 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → (𝑁𝑞𝑞𝑁))
3328, 30, 32mpjaodan 793 . . . . 5 ((𝜑𝑞 ∈ ℙ) → if(𝑞𝑁, (𝐹𝑞), 0) = (𝐹𝑞))
3411, 16, 333eqtrrd 2208 . . . 4 ((𝜑𝑞 ∈ ℙ) → (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))
3534ralrimiva 2543 . . 3 (𝜑 → ∀𝑞 ∈ ℙ (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞))
3691arithlem3 12310 . . . . 5 ((seq1( · , 𝐺)‘𝑁) ∈ ℕ → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0)
378, 36syl 14 . . . 4 (𝜑 → (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0)
38 ffn 5345 . . . . 5 (𝐹:ℙ⟶ℕ0𝐹 Fn ℙ)
39 ffn 5345 . . . . 5 ((𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0 → (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ)
40 eqfnfv 5591 . . . . 5 ((𝐹 Fn ℙ ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)) Fn ℙ) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)))
4138, 39, 40syl2an 287 . . . 4 ((𝐹:ℙ⟶ℕ0 ∧ (𝑀‘(seq1( · , 𝐺)‘𝑁)):ℙ⟶ℕ0) → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)))
422, 37, 41syl2anc 409 . . 3 (𝜑 → (𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)) ↔ ∀𝑞 ∈ ℙ (𝐹𝑞) = ((𝑀‘(seq1( · , 𝐺)‘𝑁))‘𝑞)))
4335, 42mpbird 166 . 2 (𝜑𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁)))
44 fveq2 5494 . . 3 (𝑥 = (seq1( · , 𝐺)‘𝑁) → (𝑀𝑥) = (𝑀‘(seq1( · , 𝐺)‘𝑁)))
4544rspceeqv 2852 . 2 (((seq1( · , 𝐺)‘𝑁) ∈ ℕ ∧ 𝐹 = (𝑀‘(seq1( · , 𝐺)‘𝑁))) → ∃𝑥 ∈ ℕ 𝐹 = (𝑀𝑥))
468, 43, 45syl2anc 409 1 (𝜑 → ∃𝑥 ∈ ℕ 𝐹 = (𝑀𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wral 2448  wrex 2449  ifcif 3525   class class class wbr 3987  cmpt 4048   Fn wfn 5191  wf 5192  cfv 5196  (class class class)co 5851  0cc0 7767  1c1 7768   · cmul 7772  cle 7948  cn 8871  0cn0 9128  cz 9205  seqcseq 10394  cexp 10468  cprime 12054   pCnt cpc 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886  ax-caucvg 7887
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-1o 6393  df-2o 6394  df-er 6511  df-en 6717  df-fin 6719  df-sup 6959  df-inf 6960  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-n0 9129  df-z 9206  df-uz 9481  df-q 9572  df-rp 9604  df-fz 9959  df-fzo 10092  df-fl 10219  df-mod 10272  df-seqfrec 10395  df-exp 10469  df-cj 10799  df-re 10800  df-im 10801  df-rsqrt 10955  df-abs 10956  df-dvds 11743  df-gcd 11891  df-prm 12055  df-pc 12232
This theorem is referenced by:  1arith  12312
  Copyright terms: Public domain W3C validator