Step | Hyp | Ref
| Expression |
1 | | eqid 2170 |
. . . 4
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
2 | | simp1 992 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) → 𝑀 ∈ ℤ) |
3 | | simp2 993 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
4 | | c0ex 7914 |
. . . . . . 7
⊢ 0 ∈
V |
5 | 4 | fvconst2 5712 |
. . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘𝑀) →
(((ℤ≥‘𝑀) × {0})‘𝑘) = 0) |
6 | 5 | adantl 275 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) →
(((ℤ≥‘𝑀) × {0})‘𝑘) = 0) |
7 | | eleq1w 2231 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
8 | 7 | dcbid 833 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) |
9 | | simpl3 997 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
10 | | simpr 109 |
. . . . . . 7
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
11 | 8, 9, 10 | rspcdva 2839 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → DECID
𝑘 ∈ 𝐴) |
12 | | ifiddc 3559 |
. . . . . 6
⊢
(DECID 𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 0, 0) = 0) |
13 | 11, 12 | syl 14 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → if(𝑘 ∈ 𝐴, 0, 0) = 0) |
14 | 6, 13 | eqtr4d 2206 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) →
(((ℤ≥‘𝑀) × {0})‘𝑘) = if(𝑘 ∈ 𝐴, 0, 0)) |
15 | | simp3 994 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) → ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) |
16 | | eleq1w 2231 |
. . . . . . 7
⊢ (𝑗 = 𝑎 → (𝑗 ∈ 𝐴 ↔ 𝑎 ∈ 𝐴)) |
17 | 16 | dcbid 833 |
. . . . . 6
⊢ (𝑗 = 𝑎 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑎 ∈ 𝐴)) |
18 | 17 | cbvralv 2696 |
. . . . 5
⊢
(∀𝑗 ∈
(ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴 ↔ ∀𝑎 ∈ (ℤ≥‘𝑀)DECID 𝑎 ∈ 𝐴) |
19 | 15, 18 | sylib 121 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) → ∀𝑎 ∈ (ℤ≥‘𝑀)DECID 𝑎 ∈ 𝐴) |
20 | | 0cnd 7913 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 0 ∈ ℂ) |
21 | 1, 2, 3, 14, 19, 20 | zsumdc 11347 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) → Σ𝑘 ∈ 𝐴 0 = ( ⇝ ‘seq𝑀( + , ((ℤ≥‘𝑀) ×
{0})))) |
22 | | fclim 11257 |
. . . . 5
⊢ ⇝
:dom ⇝ ⟶ℂ |
23 | | ffun 5350 |
. . . . 5
⊢ ( ⇝
:dom ⇝ ⟶ℂ → Fun ⇝ ) |
24 | 22, 23 | ax-mp 5 |
. . . 4
⊢ Fun
⇝ |
25 | | serclim0 11268 |
. . . . 5
⊢ (𝑀 ∈ ℤ → seq𝑀( + ,
((ℤ≥‘𝑀) × {0})) ⇝ 0) |
26 | 2, 25 | syl 14 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) → seq𝑀( + , ((ℤ≥‘𝑀) × {0})) ⇝
0) |
27 | | funbrfv 5535 |
. . . 4
⊢ (Fun
⇝ → (seq𝑀( + ,
((ℤ≥‘𝑀) × {0})) ⇝ 0 → ( ⇝
‘seq𝑀( + ,
((ℤ≥‘𝑀) × {0}))) = 0)) |
28 | 24, 26, 27 | mpsyl 65 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) → ( ⇝ ‘seq𝑀( + ,
((ℤ≥‘𝑀) × {0}))) = 0) |
29 | 21, 28 | eqtrd 2203 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) → Σ𝑘 ∈ 𝐴 0 = 0) |
30 | | fz1f1o 11338 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
31 | | sumeq1 11318 |
. . . . 5
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 0 = Σ𝑘 ∈ ∅ 0) |
32 | | sum0 11351 |
. . . . 5
⊢
Σ𝑘 ∈
∅ 0 = 0 |
33 | 31, 32 | eqtrdi 2219 |
. . . 4
⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 0 = 0) |
34 | | eqidd 2171 |
. . . . . . . . 9
⊢ (𝑘 = (𝑓‘𝑛) → 0 = 0) |
35 | | simpl 108 |
. . . . . . . . 9
⊢
(((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → (♯‘𝐴) ∈
ℕ) |
36 | | simpr 109 |
. . . . . . . . 9
⊢
(((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
37 | | 0cnd 7913 |
. . . . . . . . 9
⊢
((((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ 𝑘 ∈ 𝐴) → 0 ∈ ℂ) |
38 | | elfznn 10010 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(1...(♯‘𝐴))
→ 𝑛 ∈
ℕ) |
39 | 4 | fvconst2 5712 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ((ℕ
× {0})‘𝑛) =
0) |
40 | 38, 39 | syl 14 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(1...(♯‘𝐴))
→ ((ℕ × {0})‘𝑛) = 0) |
41 | 40 | adantl 275 |
. . . . . . . . 9
⊢
((((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ ×
{0})‘𝑛) =
0) |
42 | 34, 35, 36, 37, 41 | fsum3 11350 |
. . . . . . . 8
⊢
(((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → Σ𝑘 ∈ 𝐴 0 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛),
0)))‘(♯‘𝐴))) |
43 | | nnuz 9522 |
. . . . . . . . . . . . 13
⊢ ℕ =
(ℤ≥‘1) |
44 | 43 | fser0const 10472 |
. . . . . . . . . . . 12
⊢
((♯‘𝐴)
∈ ℕ → (𝑛
∈ ℕ ↦ if(𝑛
≤ (♯‘𝐴),
((ℕ × {0})‘𝑛), 0)) = (ℕ ×
{0})) |
45 | 44 | seqeq3d 10409 |
. . . . . . . . . . 11
⊢
((♯‘𝐴)
∈ ℕ → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0))) = seq1( + , (ℕ
× {0}))) |
46 | 45 | fveq1d 5498 |
. . . . . . . . . 10
⊢
((♯‘𝐴)
∈ ℕ → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛),
0)))‘(♯‘𝐴)) = (seq1( + , (ℕ ×
{0}))‘(♯‘𝐴))) |
47 | 43 | ser0 10470 |
. . . . . . . . . 10
⊢
((♯‘𝐴)
∈ ℕ → (seq1( + , (ℕ ×
{0}))‘(♯‘𝐴)) = 0) |
48 | 46, 47 | eqtrd 2203 |
. . . . . . . . 9
⊢
((♯‘𝐴)
∈ ℕ → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛),
0)))‘(♯‘𝐴)) = 0) |
49 | 35, 48 | syl 14 |
. . . . . . . 8
⊢
(((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ ×
{0})‘𝑛),
0)))‘(♯‘𝐴)) = 0) |
50 | 42, 49 | eqtrd 2203 |
. . . . . . 7
⊢
(((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → Σ𝑘 ∈ 𝐴 0 = 0) |
51 | 50 | ex 114 |
. . . . . 6
⊢
((♯‘𝐴)
∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 0 = 0)) |
52 | 51 | exlimdv 1812 |
. . . . 5
⊢
((♯‘𝐴)
∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 0 = 0)) |
53 | 52 | imp 123 |
. . . 4
⊢
(((♯‘𝐴)
∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → Σ𝑘 ∈ 𝐴 0 = 0) |
54 | 33, 53 | jaoi 711 |
. . 3
⊢ ((𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑘 ∈ 𝐴 0 = 0) |
55 | 30, 54 | syl 14 |
. 2
⊢ (𝐴 ∈ Fin → Σ𝑘 ∈ 𝐴 0 = 0) |
56 | 29, 55 | jaoi 711 |
1
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ⊆
(ℤ≥‘𝑀) ∧ ∀𝑗 ∈ (ℤ≥‘𝑀)DECID 𝑗 ∈ 𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘 ∈ 𝐴 0 = 0) |