ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumz GIF version

Theorem isumz 10745
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 16-Sep-2022.)
Assertion
Ref Expression
isumz (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝑀,𝑘

Proof of Theorem isumz
Dummy variables 𝑎 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2088 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 simp1 943 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝑀 ∈ ℤ)
3 simp2 944 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝐴 ⊆ (ℤ𝑀))
4 c0ex 7461 . . . . . . 7 0 ∈ V
54fvconst2 5495 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = 0)
65adantl 271 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {0})‘𝑘) = 0)
7 eleq1w 2148 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
87dcbid 786 . . . . . . 7 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
9 simpl3 948 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
10 simpr 108 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
118, 9, 10rspcdva 2727 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
12 ifiddc 3420 . . . . . 6 (DECID 𝑘𝐴 → if(𝑘𝐴, 0, 0) = 0)
1311, 12syl 14 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 0, 0) = 0)
146, 13eqtr4d 2123 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {0})‘𝑘) = if(𝑘𝐴, 0, 0))
15 simp3 945 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
16 eleq1w 2148 . . . . . . 7 (𝑗 = 𝑎 → (𝑗𝐴𝑎𝐴))
1716dcbid 786 . . . . . 6 (𝑗 = 𝑎 → (DECID 𝑗𝐴DECID 𝑎𝐴))
1817cbvralv 2590 . . . . 5 (∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴 ↔ ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
1915, 18sylib 120 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
20 0cnd 7460 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘𝐴) → 0 ∈ ℂ)
211, 2, 3, 14, 19, 20zisum 10738 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → Σ𝑘𝐴 0 = ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}), ℂ)))
22 fclim 10646 . . . . 5 ⇝ :dom ⇝ ⟶ℂ
23 ffun 5150 . . . . 5 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
2422, 23ax-mp 7 . . . 4 Fun ⇝
25 iserclim0 10658 . . . . 5 (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ𝑀) × {0}), ℂ) ⇝ 0)
262, 25syl 14 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → seq𝑀( + , ((ℤ𝑀) × {0}), ℂ) ⇝ 0)
27 funbrfv 5327 . . . 4 (Fun ⇝ → (seq𝑀( + , ((ℤ𝑀) × {0}), ℂ) ⇝ 0 → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}), ℂ)) = 0))
2824, 26, 27mpsyl 64 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}), ℂ)) = 0)
2921, 28eqtrd 2120 . 2 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → Σ𝑘𝐴 0 = 0)
30 fz1f1o 10728 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
31 sumeq1 10708 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 0 = Σ𝑘 ∈ ∅ 0)
32 sum0 10744 . . . . 5 Σ𝑘 ∈ ∅ 0 = 0
3331, 32syl6eq 2136 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 0 = 0)
34 eqidd 2089 . . . . . . . . 9 (𝑘 = (𝑓𝑛) → 0 = 0)
35 simpl 107 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
36 simpr 108 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
37 0cnd 7460 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 0 ∈ ℂ)
38 elfznn 9437 . . . . . . . . . . 11 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
394fvconst2 5495 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((ℕ × {0})‘𝑛) = 0)
4038, 39syl 14 . . . . . . . . . 10 (𝑛 ∈ (1...(♯‘𝐴)) → ((ℕ × {0})‘𝑛) = 0)
4140adantl 271 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {0})‘𝑛) = 0)
4234, 35, 36, 37, 41fisum 10742 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)), ℂ)‘(♯‘𝐴)))
43 nnuz 9023 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
4443fser0const 9916 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)) = (ℕ × {0}))
45 iseqeq3 9825 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)) = (ℕ × {0}) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)), ℂ) = seq1( + , (ℕ × {0}), ℂ))
4644, 45syl 14 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)), ℂ) = seq1( + , (ℕ × {0}), ℂ))
4746fveq1d 5291 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)), ℂ)‘(♯‘𝐴)) = (seq1( + , (ℕ × {0}), ℂ)‘(♯‘𝐴)))
4843iser0 9912 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ → (seq1( + , (ℕ × {0}), ℂ)‘(♯‘𝐴)) = 0)
4947, 48eqtrd 2120 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)), ℂ)‘(♯‘𝐴)) = 0)
5035, 49syl 14 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)), ℂ)‘(♯‘𝐴)) = 0)
5142, 50eqtrd 2120 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
5251ex 113 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
5352exlimdv 1747 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
5453imp 122 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
5533, 54jaoi 671 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 0 = 0)
5630, 55syl 14 . 2 (𝐴 ∈ Fin → Σ𝑘𝐴 0 = 0)
5729, 56jaoi 671 1 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 664  DECID wdc 780  w3a 924   = wceq 1289  wex 1426  wcel 1438  wral 2359  wss 2997  c0 3284  ifcif 3389  {csn 3441   class class class wbr 3837  cmpt 3891   × cxp 4426  dom cdm 4428  Fun wfun 4996  wf 4998  1-1-ontowf1o 5001  cfv 5002  (class class class)co 5634  Fincfn 6437  cc 7327  0cc0 7329  1c1 7330   + caddc 7332  cle 7502  cn 8394  cz 8720  cuz 8988  ...cfz 9393  seqcseq4 9816  chash 10148  cli 10630  Σcsu 10706
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443  ax-caucvg 7444
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-isom 5011  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-frec 6138  df-1o 6163  df-oadd 6167  df-er 6272  df-en 6438  df-dom 6439  df-fin 6440  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-fz 9394  df-fzo 9519  df-iseq 9818  df-seq3 9819  df-exp 9920  df-ihash 10149  df-cj 10241  df-re 10242  df-im 10243  df-rsqrt 10396  df-abs 10397  df-clim 10631  df-isum 10707
This theorem is referenced by:  fsum00  10819
  Copyright terms: Public domain W3C validator