ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumz GIF version

Theorem isumz 11886
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
Assertion
Ref Expression
isumz (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝑀,𝑘

Proof of Theorem isumz
Dummy variables 𝑎 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 simp1 1021 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝑀 ∈ ℤ)
3 simp2 1022 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝐴 ⊆ (ℤ𝑀))
4 c0ex 8128 . . . . . . 7 0 ∈ V
54fvconst2 5848 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = 0)
65adantl 277 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {0})‘𝑘) = 0)
7 eleq1w 2290 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
87dcbid 843 . . . . . . 7 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
9 simpl3 1026 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
10 simpr 110 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
118, 9, 10rspcdva 2912 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
12 ifiddc 3638 . . . . . 6 (DECID 𝑘𝐴 → if(𝑘𝐴, 0, 0) = 0)
1311, 12syl 14 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 0, 0) = 0)
146, 13eqtr4d 2265 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {0})‘𝑘) = if(𝑘𝐴, 0, 0))
15 simp3 1023 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
16 eleq1w 2290 . . . . . . 7 (𝑗 = 𝑎 → (𝑗𝐴𝑎𝐴))
1716dcbid 843 . . . . . 6 (𝑗 = 𝑎 → (DECID 𝑗𝐴DECID 𝑎𝐴))
1817cbvralv 2765 . . . . 5 (∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴 ↔ ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
1915, 18sylib 122 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
20 0cnd 8127 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘𝐴) → 0 ∈ ℂ)
211, 2, 3, 14, 19, 20zsumdc 11881 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → Σ𝑘𝐴 0 = ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))))
22 fclim 11791 . . . . 5 ⇝ :dom ⇝ ⟶ℂ
23 ffun 5472 . . . . 5 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
2422, 23ax-mp 5 . . . 4 Fun ⇝
25 serclim0 11802 . . . . 5 (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
262, 25syl 14 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
27 funbrfv 5664 . . . 4 (Fun ⇝ → (seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0 → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))) = 0))
2824, 26, 27mpsyl 65 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))) = 0)
2921, 28eqtrd 2262 . 2 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → Σ𝑘𝐴 0 = 0)
30 fz1f1o 11872 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
31 sumeq1 11852 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 0 = Σ𝑘 ∈ ∅ 0)
32 sum0 11885 . . . . 5 Σ𝑘 ∈ ∅ 0 = 0
3331, 32eqtrdi 2278 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 0 = 0)
34 eqidd 2230 . . . . . . . . 9 (𝑘 = (𝑓𝑛) → 0 = 0)
35 simpl 109 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
36 simpr 110 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
37 0cnd 8127 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 0 ∈ ℂ)
38 elfznn 10238 . . . . . . . . . . 11 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
394fvconst2 5848 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((ℕ × {0})‘𝑛) = 0)
4038, 39syl 14 . . . . . . . . . 10 (𝑛 ∈ (1...(♯‘𝐴)) → ((ℕ × {0})‘𝑛) = 0)
4140adantl 277 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {0})‘𝑛) = 0)
4234, 35, 36, 37, 41fsum3 11884 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)))‘(♯‘𝐴)))
43 nnuz 9746 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
4443fser0const 10744 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)) = (ℕ × {0}))
4544seqeq3d 10664 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0))) = seq1( + , (ℕ × {0})))
4645fveq1d 5625 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)))‘(♯‘𝐴)) = (seq1( + , (ℕ × {0}))‘(♯‘𝐴)))
4743ser0 10742 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ → (seq1( + , (ℕ × {0}))‘(♯‘𝐴)) = 0)
4846, 47eqtrd 2262 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)))‘(♯‘𝐴)) = 0)
4935, 48syl 14 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)))‘(♯‘𝐴)) = 0)
5042, 49eqtrd 2262 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
5150ex 115 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
5251exlimdv 1865 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
5352imp 124 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
5433, 53jaoi 721 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 0 = 0)
5530, 54syl 14 . 2 (𝐴 ∈ Fin → Σ𝑘𝐴 0 = 0)
5629, 55jaoi 721 1 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  wss 3197  c0 3491  ifcif 3602  {csn 3666   class class class wbr 4082  cmpt 4144   × cxp 4714  dom cdm 4716  Fun wfun 5308  wf 5310  1-1-ontowf1o 5313  cfv 5314  (class class class)co 5994  Fincfn 6877  cc 7985  0cc0 7987  1c1 7988   + caddc 7990  cle 8170  cn 9098  cz 9434  cuz 9710  ...cfz 10192  seqcseq 10656  chash 10984  cli 11775  Σcsu 11850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851
This theorem is referenced by:  fsum00  11959  fsumdvds  12339  pcfac  12859  plymullem1  15407  nconstwlpolem0  16362
  Copyright terms: Public domain W3C validator