ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumz GIF version

Theorem isumz 11535
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
Assertion
Ref Expression
isumz (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝑀,𝑘

Proof of Theorem isumz
Dummy variables 𝑎 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 simp1 999 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝑀 ∈ ℤ)
3 simp2 1000 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → 𝐴 ⊆ (ℤ𝑀))
4 c0ex 8015 . . . . . . 7 0 ∈ V
54fvconst2 5775 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = 0)
65adantl 277 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {0})‘𝑘) = 0)
7 eleq1w 2254 . . . . . . . 8 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
87dcbid 839 . . . . . . 7 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
9 simpl3 1004 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
10 simpr 110 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
118, 9, 10rspcdva 2870 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
12 ifiddc 3592 . . . . . 6 (DECID 𝑘𝐴 → if(𝑘𝐴, 0, 0) = 0)
1311, 12syl 14 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 0, 0) = 0)
146, 13eqtr4d 2229 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {0})‘𝑘) = if(𝑘𝐴, 0, 0))
15 simp3 1001 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)
16 eleq1w 2254 . . . . . . 7 (𝑗 = 𝑎 → (𝑗𝐴𝑎𝐴))
1716dcbid 839 . . . . . 6 (𝑗 = 𝑎 → (DECID 𝑗𝐴DECID 𝑎𝐴))
1817cbvralv 2726 . . . . 5 (∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴 ↔ ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
1915, 18sylib 122 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ∀𝑎 ∈ (ℤ𝑀)DECID 𝑎𝐴)
20 0cnd 8014 . . . 4 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∧ 𝑘𝐴) → 0 ∈ ℂ)
211, 2, 3, 14, 19, 20zsumdc 11530 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → Σ𝑘𝐴 0 = ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))))
22 fclim 11440 . . . . 5 ⇝ :dom ⇝ ⟶ℂ
23 ffun 5407 . . . . 5 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
2422, 23ax-mp 5 . . . 4 Fun ⇝
25 serclim0 11451 . . . . 5 (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
262, 25syl 14 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
27 funbrfv 5596 . . . 4 (Fun ⇝ → (seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0 → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))) = 0))
2824, 26, 27mpsyl 65 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))) = 0)
2921, 28eqtrd 2226 . 2 ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) → Σ𝑘𝐴 0 = 0)
30 fz1f1o 11521 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
31 sumeq1 11501 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 0 = Σ𝑘 ∈ ∅ 0)
32 sum0 11534 . . . . 5 Σ𝑘 ∈ ∅ 0 = 0
3331, 32eqtrdi 2242 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 0 = 0)
34 eqidd 2194 . . . . . . . . 9 (𝑘 = (𝑓𝑛) → 0 = 0)
35 simpl 109 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
36 simpr 110 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
37 0cnd 8014 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 0 ∈ ℂ)
38 elfznn 10123 . . . . . . . . . . 11 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
394fvconst2 5775 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((ℕ × {0})‘𝑛) = 0)
4038, 39syl 14 . . . . . . . . . 10 (𝑛 ∈ (1...(♯‘𝐴)) → ((ℕ × {0})‘𝑛) = 0)
4140adantl 277 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {0})‘𝑛) = 0)
4234, 35, 36, 37, 41fsum3 11533 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)))‘(♯‘𝐴)))
43 nnuz 9631 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
4443fser0const 10609 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ → (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)) = (ℕ × {0}))
4544seqeq3d 10529 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0))) = seq1( + , (ℕ × {0})))
4645fveq1d 5557 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)))‘(♯‘𝐴)) = (seq1( + , (ℕ × {0}))‘(♯‘𝐴)))
4743ser0 10607 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ → (seq1( + , (ℕ × {0}))‘(♯‘𝐴)) = 0)
4846, 47eqtrd 2226 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)))‘(♯‘𝐴)) = 0)
4935, 48syl 14 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), ((ℕ × {0})‘𝑛), 0)))‘(♯‘𝐴)) = 0)
5042, 49eqtrd 2226 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
5150ex 115 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
5251exlimdv 1830 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
5352imp 124 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
5433, 53jaoi 717 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 0 = 0)
5530, 54syl 14 . 2 (𝐴 ∈ Fin → Σ𝑘𝐴 0 = 0)
5629, 55jaoi 717 1 (((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wex 1503  wcel 2164  wral 2472  wss 3154  c0 3447  ifcif 3558  {csn 3619   class class class wbr 4030  cmpt 4091   × cxp 4658  dom cdm 4660  Fun wfun 5249  wf 5251  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  Fincfn 6796  cc 7872  0cc0 7874  1c1 7875   + caddc 7877  cle 8057  cn 8984  cz 9320  cuz 9595  ...cfz 10077  seqcseq 10521  chash 10849  cli 11424  Σcsu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  fsum00  11608  pcfac  12491  plymullem1  14927  nconstwlpolem0  15623
  Copyright terms: Public domain W3C validator