ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemshrink GIF version

Theorem exbtwnzlemshrink 10463
Description: Lemma for exbtwnzlemex 10464. Shrinking the range around 𝐴. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnzlemshrink.j (𝜑𝐽 ∈ ℕ)
exbtwnzlemshrink.a (𝜑𝐴 ∈ ℝ)
exbtwnzlemshrink.tri ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
Assertion
Ref Expression
exbtwnzlemshrink ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴,𝑚   𝑚,𝐽   𝜑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐽(𝑥,𝑛)

Proof of Theorem exbtwnzlemshrink
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exbtwnzlemshrink.j . . 3 (𝜑𝐽 ∈ ℕ)
21adantr 276 . 2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → 𝐽 ∈ ℕ)
3 oveq2 6008 . . . . . . . 8 (𝑤 = 1 → (𝑚 + 𝑤) = (𝑚 + 1))
43breq2d 4094 . . . . . . 7 (𝑤 = 1 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 1)))
54anbi2d 464 . . . . . 6 (𝑤 = 1 → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + 1))))
65rexbidv 2531 . . . . 5 (𝑤 = 1 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1))))
76anbi2d 464 . . . 4 (𝑤 = 1 → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1)))))
87imbi1d 231 . . 3 (𝑤 = 1 → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
9 oveq2 6008 . . . . . . . 8 (𝑤 = 𝑘 → (𝑚 + 𝑤) = (𝑚 + 𝑘))
109breq2d 4094 . . . . . . 7 (𝑤 = 𝑘 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝑘)))
1110anbi2d 464 . . . . . 6 (𝑤 = 𝑘 → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + 𝑘))))
1211rexbidv 2531 . . . . 5 (𝑤 = 𝑘 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))))
1312anbi2d 464 . . . 4 (𝑤 = 𝑘 → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘)))))
1413imbi1d 231 . . 3 (𝑤 = 𝑘 → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
15 oveq2 6008 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (𝑚 + 𝑤) = (𝑚 + (𝑘 + 1)))
1615breq2d 4094 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + (𝑘 + 1))))
1716anbi2d 464 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
1817rexbidv 2531 . . . . 5 (𝑤 = (𝑘 + 1) → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
1918anbi2d 464 . . . 4 (𝑤 = (𝑘 + 1) → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1))))))
2019imbi1d 231 . . 3 (𝑤 = (𝑘 + 1) → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
21 oveq2 6008 . . . . . . . 8 (𝑤 = 𝐽 → (𝑚 + 𝑤) = (𝑚 + 𝐽))
2221breq2d 4094 . . . . . . 7 (𝑤 = 𝐽 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝐽)))
2322anbi2d 464 . . . . . 6 (𝑤 = 𝐽 → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + 𝐽))))
2423rexbidv 2531 . . . . 5 (𝑤 = 𝐽 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))))
2524anbi2d 464 . . . 4 (𝑤 = 𝐽 → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽)))))
2625imbi1d 231 . . 3 (𝑤 = 𝐽 → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
27 breq1 4085 . . . . . . 7 (𝑚 = 𝑥 → (𝑚𝐴𝑥𝐴))
28 oveq1 6007 . . . . . . . 8 (𝑚 = 𝑥 → (𝑚 + 1) = (𝑥 + 1))
2928breq2d 4094 . . . . . . 7 (𝑚 = 𝑥 → (𝐴 < (𝑚 + 1) ↔ 𝐴 < (𝑥 + 1)))
3027, 29anbi12d 473 . . . . . 6 (𝑚 = 𝑥 → ((𝑚𝐴𝐴 < (𝑚 + 1)) ↔ (𝑥𝐴𝐴 < (𝑥 + 1))))
3130cbvrexv 2766 . . . . 5 (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1)) ↔ ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3231biimpi 120 . . . 4 (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1)) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3332adantl 277 . . 3 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
34 simpl 109 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ ℕ)
35 exbtwnzlemshrink.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3635adantl 277 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝐴 ∈ ℝ)
37 exbtwnzlemshrink.tri . . . . . . . 8 ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
3837adantll 476 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
3934, 36, 38exbtwnzlemstep 10462 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘)))
4039ex 115 . . . . 5 ((𝑘 ∈ ℕ ∧ 𝜑) → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))))
4140imdistanda 448 . . . 4 (𝑘 ∈ ℕ → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘)))))
4241imim1d 75 . . 3 (𝑘 ∈ ℕ → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
438, 14, 20, 26, 33, 42nnind 9122 . 2 (𝐽 ∈ ℕ → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
442, 43mpcom 36 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4082  (class class class)co 6000  cr 7994  1c1 7996   + caddc 7998   < clt 8177  cle 8178  cn 9106  cz 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443
This theorem is referenced by:  exbtwnzlemex  10464
  Copyright terms: Public domain W3C validator