ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemshrink GIF version

Theorem exbtwnzlemshrink 10184
Description: Lemma for exbtwnzlemex 10185. Shrinking the range around 𝐴. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnzlemshrink.j (𝜑𝐽 ∈ ℕ)
exbtwnzlemshrink.a (𝜑𝐴 ∈ ℝ)
exbtwnzlemshrink.tri ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
Assertion
Ref Expression
exbtwnzlemshrink ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴,𝑚   𝑚,𝐽   𝜑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐽(𝑥,𝑛)

Proof of Theorem exbtwnzlemshrink
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exbtwnzlemshrink.j . . 3 (𝜑𝐽 ∈ ℕ)
21adantr 274 . 2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → 𝐽 ∈ ℕ)
3 oveq2 5850 . . . . . . . 8 (𝑤 = 1 → (𝑚 + 𝑤) = (𝑚 + 1))
43breq2d 3994 . . . . . . 7 (𝑤 = 1 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 1)))
54anbi2d 460 . . . . . 6 (𝑤 = 1 → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + 1))))
65rexbidv 2467 . . . . 5 (𝑤 = 1 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1))))
76anbi2d 460 . . . 4 (𝑤 = 1 → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1)))))
87imbi1d 230 . . 3 (𝑤 = 1 → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
9 oveq2 5850 . . . . . . . 8 (𝑤 = 𝑘 → (𝑚 + 𝑤) = (𝑚 + 𝑘))
109breq2d 3994 . . . . . . 7 (𝑤 = 𝑘 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝑘)))
1110anbi2d 460 . . . . . 6 (𝑤 = 𝑘 → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + 𝑘))))
1211rexbidv 2467 . . . . 5 (𝑤 = 𝑘 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))))
1312anbi2d 460 . . . 4 (𝑤 = 𝑘 → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘)))))
1413imbi1d 230 . . 3 (𝑤 = 𝑘 → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
15 oveq2 5850 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (𝑚 + 𝑤) = (𝑚 + (𝑘 + 1)))
1615breq2d 3994 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + (𝑘 + 1))))
1716anbi2d 460 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
1817rexbidv 2467 . . . . 5 (𝑤 = (𝑘 + 1) → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
1918anbi2d 460 . . . 4 (𝑤 = (𝑘 + 1) → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1))))))
2019imbi1d 230 . . 3 (𝑤 = (𝑘 + 1) → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
21 oveq2 5850 . . . . . . . 8 (𝑤 = 𝐽 → (𝑚 + 𝑤) = (𝑚 + 𝐽))
2221breq2d 3994 . . . . . . 7 (𝑤 = 𝐽 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝐽)))
2322anbi2d 460 . . . . . 6 (𝑤 = 𝐽 → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + 𝐽))))
2423rexbidv 2467 . . . . 5 (𝑤 = 𝐽 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))))
2524anbi2d 460 . . . 4 (𝑤 = 𝐽 → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽)))))
2625imbi1d 230 . . 3 (𝑤 = 𝐽 → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
27 breq1 3985 . . . . . . 7 (𝑚 = 𝑥 → (𝑚𝐴𝑥𝐴))
28 oveq1 5849 . . . . . . . 8 (𝑚 = 𝑥 → (𝑚 + 1) = (𝑥 + 1))
2928breq2d 3994 . . . . . . 7 (𝑚 = 𝑥 → (𝐴 < (𝑚 + 1) ↔ 𝐴 < (𝑥 + 1)))
3027, 29anbi12d 465 . . . . . 6 (𝑚 = 𝑥 → ((𝑚𝐴𝐴 < (𝑚 + 1)) ↔ (𝑥𝐴𝐴 < (𝑥 + 1))))
3130cbvrexv 2693 . . . . 5 (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1)) ↔ ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3231biimpi 119 . . . 4 (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1)) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3332adantl 275 . . 3 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
34 simpl 108 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ ℕ)
35 exbtwnzlemshrink.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3635adantl 275 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝐴 ∈ ℝ)
37 exbtwnzlemshrink.tri . . . . . . . 8 ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
3837adantll 468 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
3934, 36, 38exbtwnzlemstep 10183 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘)))
4039ex 114 . . . . 5 ((𝑘 ∈ ℕ ∧ 𝜑) → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))))
4140imdistanda 445 . . . 4 (𝑘 ∈ ℕ → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘)))))
4241imim1d 75 . . 3 (𝑘 ∈ ℕ → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
438, 14, 20, 26, 33, 42nnind 8873 . 2 (𝐽 ∈ ℕ → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
442, 43mpcom 36 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  (class class class)co 5842  cr 7752  1c1 7754   + caddc 7756   < clt 7933  cle 7934  cn 8857  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192
This theorem is referenced by:  exbtwnzlemex  10185
  Copyright terms: Public domain W3C validator