Step | Hyp | Ref
| Expression |
1 | | exbtwnzlemshrink.j |
. . 3
⊢ (𝜑 → 𝐽 ∈ ℕ) |
2 | 1 | adantr 276 |
. 2
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))) → 𝐽 ∈ ℕ) |
3 | | oveq2 5873 |
. . . . . . . 8
⊢ (𝑤 = 1 → (𝑚 + 𝑤) = (𝑚 + 1)) |
4 | 3 | breq2d 4010 |
. . . . . . 7
⊢ (𝑤 = 1 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 1))) |
5 | 4 | anbi2d 464 |
. . . . . 6
⊢ (𝑤 = 1 → ((𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 1)))) |
6 | 5 | rexbidv 2476 |
. . . . 5
⊢ (𝑤 = 1 → (∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 1)))) |
7 | 6 | anbi2d 464 |
. . . 4
⊢ (𝑤 = 1 → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 1))))) |
8 | 7 | imbi1d 231 |
. . 3
⊢ (𝑤 = 1 → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 1))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))))) |
9 | | oveq2 5873 |
. . . . . . . 8
⊢ (𝑤 = 𝑘 → (𝑚 + 𝑤) = (𝑚 + 𝑘)) |
10 | 9 | breq2d 4010 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝑘))) |
11 | 10 | anbi2d 464 |
. . . . . 6
⊢ (𝑤 = 𝑘 → ((𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑘)))) |
12 | 11 | rexbidv 2476 |
. . . . 5
⊢ (𝑤 = 𝑘 → (∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑘)))) |
13 | 12 | anbi2d 464 |
. . . 4
⊢ (𝑤 = 𝑘 → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑘))))) |
14 | 13 | imbi1d 231 |
. . 3
⊢ (𝑤 = 𝑘 → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))))) |
15 | | oveq2 5873 |
. . . . . . . 8
⊢ (𝑤 = (𝑘 + 1) → (𝑚 + 𝑤) = (𝑚 + (𝑘 + 1))) |
16 | 15 | breq2d 4010 |
. . . . . . 7
⊢ (𝑤 = (𝑘 + 1) → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + (𝑘 + 1)))) |
17 | 16 | anbi2d 464 |
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → ((𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1))))) |
18 | 17 | rexbidv 2476 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1))))) |
19 | 18 | anbi2d 464 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1)))))) |
20 | 19 | imbi1d 231 |
. . 3
⊢ (𝑤 = (𝑘 + 1) → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))))) |
21 | | oveq2 5873 |
. . . . . . . 8
⊢ (𝑤 = 𝐽 → (𝑚 + 𝑤) = (𝑚 + 𝐽)) |
22 | 21 | breq2d 4010 |
. . . . . . 7
⊢ (𝑤 = 𝐽 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝐽))) |
23 | 22 | anbi2d 464 |
. . . . . 6
⊢ (𝑤 = 𝐽 → ((𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐽)))) |
24 | 23 | rexbidv 2476 |
. . . . 5
⊢ (𝑤 = 𝐽 → (∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐽)))) |
25 | 24 | anbi2d 464 |
. . . 4
⊢ (𝑤 = 𝐽 → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))))) |
26 | 25 | imbi1d 231 |
. . 3
⊢ (𝑤 = 𝐽 → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))))) |
27 | | breq1 4001 |
. . . . . . 7
⊢ (𝑚 = 𝑥 → (𝑚 ≤ 𝐴 ↔ 𝑥 ≤ 𝐴)) |
28 | | oveq1 5872 |
. . . . . . . 8
⊢ (𝑚 = 𝑥 → (𝑚 + 1) = (𝑥 + 1)) |
29 | 28 | breq2d 4010 |
. . . . . . 7
⊢ (𝑚 = 𝑥 → (𝐴 < (𝑚 + 1) ↔ 𝐴 < (𝑥 + 1))) |
30 | 27, 29 | anbi12d 473 |
. . . . . 6
⊢ (𝑚 = 𝑥 → ((𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 1)) ↔ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
31 | 30 | cbvrexv 2702 |
. . . . 5
⊢
(∃𝑚 ∈
ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 1)) ↔ ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
32 | 31 | biimpi 120 |
. . . 4
⊢
(∃𝑚 ∈
ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 1)) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
33 | 32 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 1))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |
34 | | simpl 109 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ ℕ) |
35 | | exbtwnzlemshrink.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
36 | 35 | adantl 277 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → 𝐴 ∈ ℝ) |
37 | | exbtwnzlemshrink.tri |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) |
38 | 37 | adantll 476 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ ℤ) → (𝑛 ≤ 𝐴 ∨ 𝐴 < 𝑛)) |
39 | 34, 36, 38 | exbtwnzlemstep 10216 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ ∧ 𝜑) ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑘))) |
40 | 39 | ex 115 |
. . . . 5
⊢ ((𝑘 ∈ ℕ ∧ 𝜑) → (∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1))) → ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑘)))) |
41 | 40 | imdistanda 448 |
. . . 4
⊢ (𝑘 ∈ ℕ → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1)))) → (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑘))))) |
42 | 41 | imim1d 75 |
. . 3
⊢ (𝑘 ∈ ℕ → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))))) |
43 | 8, 14, 20, 26, 33, 42 | nnind 8906 |
. 2
⊢ (𝐽 ∈ ℕ → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
44 | 2, 43 | mpcom 36 |
1
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚 ≤ 𝐴 ∧ 𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) |