ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemshrink GIF version

Theorem exbtwnzlemshrink 9723
Description: Lemma for exbtwnzlemex 9724. Shrinking the range around 𝐴. (Contributed by Jim Kingdon, 10-May-2022.)
Hypotheses
Ref Expression
exbtwnzlemshrink.j (𝜑𝐽 ∈ ℕ)
exbtwnzlemshrink.a (𝜑𝐴 ∈ ℝ)
exbtwnzlemshrink.tri ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
Assertion
Ref Expression
exbtwnzlemshrink ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴,𝑚   𝑚,𝐽   𝜑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐽(𝑥,𝑛)

Proof of Theorem exbtwnzlemshrink
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exbtwnzlemshrink.j . . 3 (𝜑𝐽 ∈ ℕ)
21adantr 271 . 2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → 𝐽 ∈ ℕ)
3 oveq2 5676 . . . . . . . 8 (𝑤 = 1 → (𝑚 + 𝑤) = (𝑚 + 1))
43breq2d 3865 . . . . . . 7 (𝑤 = 1 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 1)))
54anbi2d 453 . . . . . 6 (𝑤 = 1 → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + 1))))
65rexbidv 2382 . . . . 5 (𝑤 = 1 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1))))
76anbi2d 453 . . . 4 (𝑤 = 1 → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1)))))
87imbi1d 230 . . 3 (𝑤 = 1 → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
9 oveq2 5676 . . . . . . . 8 (𝑤 = 𝑘 → (𝑚 + 𝑤) = (𝑚 + 𝑘))
109breq2d 3865 . . . . . . 7 (𝑤 = 𝑘 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝑘)))
1110anbi2d 453 . . . . . 6 (𝑤 = 𝑘 → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + 𝑘))))
1211rexbidv 2382 . . . . 5 (𝑤 = 𝑘 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))))
1312anbi2d 453 . . . 4 (𝑤 = 𝑘 → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘)))))
1413imbi1d 230 . . 3 (𝑤 = 𝑘 → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
15 oveq2 5676 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (𝑚 + 𝑤) = (𝑚 + (𝑘 + 1)))
1615breq2d 3865 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + (𝑘 + 1))))
1716anbi2d 453 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
1817rexbidv 2382 . . . . 5 (𝑤 = (𝑘 + 1) → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
1918anbi2d 453 . . . 4 (𝑤 = (𝑘 + 1) → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1))))))
2019imbi1d 230 . . 3 (𝑤 = (𝑘 + 1) → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
21 oveq2 5676 . . . . . . . 8 (𝑤 = 𝐽 → (𝑚 + 𝑤) = (𝑚 + 𝐽))
2221breq2d 3865 . . . . . . 7 (𝑤 = 𝐽 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝐽)))
2322anbi2d 453 . . . . . 6 (𝑤 = 𝐽 → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + 𝐽))))
2423rexbidv 2382 . . . . 5 (𝑤 = 𝐽 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))))
2524anbi2d 453 . . . 4 (𝑤 = 𝐽 → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽)))))
2625imbi1d 230 . . 3 (𝑤 = 𝐽 → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
27 breq1 3856 . . . . . . 7 (𝑚 = 𝑥 → (𝑚𝐴𝑥𝐴))
28 oveq1 5675 . . . . . . . 8 (𝑚 = 𝑥 → (𝑚 + 1) = (𝑥 + 1))
2928breq2d 3865 . . . . . . 7 (𝑚 = 𝑥 → (𝐴 < (𝑚 + 1) ↔ 𝐴 < (𝑥 + 1)))
3027, 29anbi12d 458 . . . . . 6 (𝑚 = 𝑥 → ((𝑚𝐴𝐴 < (𝑚 + 1)) ↔ (𝑥𝐴𝐴 < (𝑥 + 1))))
3130cbvrexv 2594 . . . . 5 (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1)) ↔ ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3231biimpi 119 . . . 4 (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1)) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3332adantl 272 . . 3 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
34 simpl 108 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝑘 ∈ ℕ)
35 exbtwnzlemshrink.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3635adantl 272 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝜑) → 𝐴 ∈ ℝ)
37 exbtwnzlemshrink.tri . . . . . . . 8 ((𝜑𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
3837adantll 461 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ ℤ) → (𝑛𝐴𝐴 < 𝑛))
3934, 36, 38exbtwnzlemstep 9722 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘)))
4039ex 114 . . . . 5 ((𝑘 ∈ ℕ ∧ 𝜑) → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))))
4140imdistanda 438 . . . 4 (𝑘 ∈ ℕ → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → (𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘)))))
4241imim1d 75 . . 3 (𝑘 ∈ ℕ → (((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
438, 14, 20, 26, 33, 42nnind 8501 . 2 (𝐽 ∈ ℕ → ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
442, 43mpcom 36 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 665   = wceq 1290  wcel 1439  wrex 2361   class class class wbr 3853  (class class class)co 5668  cr 7412  1c1 7414   + caddc 7416   < clt 7585  cle 7586  cn 8485  cz 8813
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-addcom 7508  ax-addass 7510  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-0id 7516  ax-rnegex 7517  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-ltadd 7524
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-br 3854  df-opab 3908  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-iota 4995  df-fun 5032  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-inn 8486  df-n0 8737  df-z 8814
This theorem is referenced by:  exbtwnzlemex  9724
  Copyright terms: Public domain W3C validator