Step | Hyp | Ref
| Expression |
1 | | monoord.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 9988 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
4 | | eleq1 2233 |
. . . . . 6
⊢ (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁))) |
5 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (𝐹‘𝑥) = (𝐹‘𝑀)) |
6 | 5 | breq2d 4001 |
. . . . . 6
⊢ (𝑥 = 𝑀 → ((𝐹‘𝑀) ≤ (𝐹‘𝑥) ↔ (𝐹‘𝑀) ≤ (𝐹‘𝑀))) |
7 | 4, 6 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑥)) ↔ (𝑀 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑀)))) |
8 | 7 | imbi2d 229 |
. . . 4
⊢ (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑥))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑀))))) |
9 | | eleq1 2233 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁))) |
10 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (𝐹‘𝑥) = (𝐹‘𝑛)) |
11 | 10 | breq2d 4001 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((𝐹‘𝑀) ≤ (𝐹‘𝑥) ↔ (𝐹‘𝑀) ≤ (𝐹‘𝑛))) |
12 | 9, 11 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑥)) ↔ (𝑛 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑛)))) |
13 | 12 | imbi2d 229 |
. . . 4
⊢ (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑛))))) |
14 | | eleq1 2233 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁))) |
15 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑛 + 1))) |
16 | 15 | breq2d 4001 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑀) ≤ (𝐹‘𝑥) ↔ (𝐹‘𝑀) ≤ (𝐹‘(𝑛 + 1)))) |
17 | 14, 16 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑥)) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘(𝑛 + 1))))) |
18 | 17 | imbi2d 229 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘(𝑛 + 1)))))) |
19 | | eleq1 2233 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁))) |
20 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (𝐹‘𝑥) = (𝐹‘𝑁)) |
21 | 20 | breq2d 4001 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((𝐹‘𝑀) ≤ (𝐹‘𝑥) ↔ (𝐹‘𝑀) ≤ (𝐹‘𝑁))) |
22 | 19, 21 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑥)) ↔ (𝑁 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑁)))) |
23 | 22 | imbi2d 229 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑁))))) |
24 | | fveq2 5496 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
25 | 24 | eleq1d 2239 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑀) ∈ ℝ)) |
26 | | monoord.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
27 | 26 | ralrimiva 2543 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) |
28 | | eluzfz1 9987 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
29 | 1, 28 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
30 | 25, 27, 29 | rspcdva 2839 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
31 | 30 | leidd 8433 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑀)) |
32 | 31 | a1d 22 |
. . . . 5
⊢ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑀))) |
33 | 32 | a1i 9 |
. . . 4
⊢ (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑀)))) |
34 | | simprl 526 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
35 | | simprr 527 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
36 | | peano2fzr 9993 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁)) |
37 | 34, 35, 36 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁)) |
38 | 37 | expr 373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁))) |
39 | 38 | imim1d 75 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑛)))) |
40 | | fveq2 5496 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
41 | | oveq1 5860 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑛 → (𝑘 + 1) = (𝑛 + 1)) |
42 | 41 | fveq2d 5500 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1))) |
43 | 40, 42 | breq12d 4002 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1)))) |
44 | | monoord.3 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
45 | 44 | ralrimiva 2543 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
46 | 45 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹‘𝑘) ≤ (𝐹‘(𝑘 + 1))) |
47 | | eluzelz 9496 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑛 ∈ ℤ) |
48 | 34, 47 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ) |
49 | | elfzuz3 9978 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) |
50 | 35, 49 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) |
51 | | eluzp1m1 9510 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℤ ∧ 𝑁 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑛)) |
52 | 48, 50, 51 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑁 − 1) ∈
(ℤ≥‘𝑛)) |
53 | | elfzuzb 9975 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑛))) |
54 | 34, 52, 53 | sylanbrc 415 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...(𝑁 − 1))) |
55 | 43, 46, 54 | rspcdva 2839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1))) |
56 | 30 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘𝑀) ∈ ℝ) |
57 | 40 | eleq1d 2239 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑛) ∈ ℝ)) |
58 | 27 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) ∈ ℝ) |
59 | 57, 58, 37 | rspcdva 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘𝑛) ∈ ℝ) |
60 | | fveq2 5496 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
61 | 60 | eleq1d 2239 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ)) |
62 | 61, 58, 35 | rspcdva 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ ℝ) |
63 | | letr 8002 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑀) ∈ ℝ ∧ (𝐹‘𝑛) ∈ ℝ ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ) → (((𝐹‘𝑀) ≤ (𝐹‘𝑛) ∧ (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1))) → (𝐹‘𝑀) ≤ (𝐹‘(𝑛 + 1)))) |
64 | 56, 59, 62, 63 | syl3anc 1233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (((𝐹‘𝑀) ≤ (𝐹‘𝑛) ∧ (𝐹‘𝑛) ≤ (𝐹‘(𝑛 + 1))) → (𝐹‘𝑀) ≤ (𝐹‘(𝑛 + 1)))) |
65 | 55, 64 | mpan2d 426 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐹‘𝑀) ≤ (𝐹‘𝑛) → (𝐹‘𝑀) ≤ (𝐹‘(𝑛 + 1)))) |
66 | 65 | expr 373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹‘𝑀) ≤ (𝐹‘𝑛) → (𝐹‘𝑀) ≤ (𝐹‘(𝑛 + 1))))) |
67 | 66 | a2d 26 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘(𝑛 + 1))))) |
68 | 39, 67 | syld 45 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘(𝑛 + 1))))) |
69 | 68 | expcom 115 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝜑 → ((𝑛 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘(𝑛 + 1)))))) |
70 | 69 | a2d 26 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘(𝑛 + 1)))))) |
71 | 8, 13, 18, 23, 33, 70 | uzind4 9547 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑁)))) |
72 | 1, 71 | mpcom 36 |
. 2
⊢ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹‘𝑀) ≤ (𝐹‘𝑁))) |
73 | 3, 72 | mpd 13 |
1
⊢ (𝜑 → (𝐹‘𝑀) ≤ (𝐹‘𝑁)) |