ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  monoord GIF version

Theorem monoord 10280
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
monoord.1 (𝜑𝑁 ∈ (ℤ𝑀))
monoord.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
monoord.3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
monoord (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoord
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monoord.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 9843 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2203 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 fveq2 5429 . . . . . . 7 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
65breq2d 3949 . . . . . 6 (𝑥 = 𝑀 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑀)))
74, 6imbi12d 233 . . . . 5 (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀))))
87imbi2d 229 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀)))))
9 eleq1 2203 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
10 fveq2 5429 . . . . . . 7 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
1110breq2d 3949 . . . . . 6 (𝑥 = 𝑛 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑛)))
129, 11imbi12d 233 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))))
1312imbi2d 229 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)))))
14 eleq1 2203 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
15 fveq2 5429 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
1615breq2d 3949 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
1714, 16imbi12d 233 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1)))))
1817imbi2d 229 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))))
19 eleq1 2203 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
20 fveq2 5429 . . . . . . 7 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
2120breq2d 3949 . . . . . 6 (𝑥 = 𝑁 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑁)))
2219, 21imbi12d 233 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁))))
2322imbi2d 229 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁)))))
24 fveq2 5429 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2524eleq1d 2209 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
26 monoord.2 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
2726ralrimiva 2508 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
28 eluzfz1 9842 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
291, 28syl 14 . . . . . . . 8 (𝜑𝑀 ∈ (𝑀...𝑁))
3025, 27, 29rspcdva 2798 . . . . . . 7 (𝜑 → (𝐹𝑀) ∈ ℝ)
3130leidd 8300 . . . . . 6 (𝜑 → (𝐹𝑀) ≤ (𝐹𝑀))
3231a1d 22 . . . . 5 (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀)))
3332a1i 9 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀))))
34 simprl 521 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ𝑀))
35 simprr 522 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
36 peano2fzr 9848 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
3734, 35, 36syl2anc 409 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
3837expr 373 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
3938imim1d 75 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))))
40 fveq2 5429 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
41 oveq1 5789 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑘 + 1) = (𝑛 + 1))
4241fveq2d 5433 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
4340, 42breq12d 3950 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))))
44 monoord.3 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
4544ralrimiva 2508 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
4645adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
47 eluzelz 9359 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
4834, 47syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ)
49 elfzuz3 9834 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
5035, 49syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
51 eluzp1m1 9373 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))) → (𝑁 − 1) ∈ (ℤ𝑛))
5248, 50, 51syl2anc 409 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑁 − 1) ∈ (ℤ𝑛))
53 elfzuzb 9831 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑛 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑛)))
5434, 52, 53sylanbrc 414 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...(𝑁 − 1)))
5543, 46, 54rspcdva 2798 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
5630adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑀) ∈ ℝ)
5740eleq1d 2209 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
5827adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
5957, 58, 37rspcdva 2798 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑛) ∈ ℝ)
60 fveq2 5429 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
6160eleq1d 2209 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ))
6261, 58, 35rspcdva 2798 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
63 letr 7871 . . . . . . . . . . 11 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑛) ∈ ℝ ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ) → (((𝐹𝑀) ≤ (𝐹𝑛) ∧ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6456, 59, 62, 63syl3anc 1217 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (((𝐹𝑀) ≤ (𝐹𝑛) ∧ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6555, 64mpan2d 425 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐹𝑀) ≤ (𝐹𝑛) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6665expr 373 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹𝑀) ≤ (𝐹𝑛) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1)))))
6766a2d 26 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1)))))
6839, 67syld 45 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1)))))
6968expcom 115 . . . . 5 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))))
7069a2d 26 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))))
718, 13, 18, 23, 33, 70uzind4 9410 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁))))
721, 71mpcom 36 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁)))
733, 72mpd 13 1 (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  wral 2417   class class class wbr 3937  cfv 5131  (class class class)co 5782  cr 7643  1c1 7645   + caddc 7647  cle 7825  cmin 7957  cz 9078  cuz 9350  ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822
This theorem is referenced by:  monoord2  10281  ser3mono  10282  climub  11145
  Copyright terms: Public domain W3C validator