ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  monoord GIF version

Theorem monoord 10594
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
Hypotheses
Ref Expression
monoord.1 (𝜑𝑁 ∈ (ℤ𝑀))
monoord.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
monoord.3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
monoord (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoord
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monoord.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 10124 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2259 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 fveq2 5561 . . . . . . 7 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
65breq2d 4046 . . . . . 6 (𝑥 = 𝑀 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑀)))
74, 6imbi12d 234 . . . . 5 (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀))))
87imbi2d 230 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀)))))
9 eleq1 2259 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
10 fveq2 5561 . . . . . . 7 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
1110breq2d 4046 . . . . . 6 (𝑥 = 𝑛 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑛)))
129, 11imbi12d 234 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))))
1312imbi2d 230 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)))))
14 eleq1 2259 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
15 fveq2 5561 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
1615breq2d 4046 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
1714, 16imbi12d 234 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1)))))
1817imbi2d 230 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))))
19 eleq1 2259 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
20 fveq2 5561 . . . . . . 7 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
2120breq2d 4046 . . . . . 6 (𝑥 = 𝑁 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑁)))
2219, 21imbi12d 234 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁))))
2322imbi2d 230 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁)))))
24 fveq2 5561 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2524eleq1d 2265 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
26 monoord.2 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
2726ralrimiva 2570 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
28 eluzfz1 10123 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
291, 28syl 14 . . . . . . . 8 (𝜑𝑀 ∈ (𝑀...𝑁))
3025, 27, 29rspcdva 2873 . . . . . . 7 (𝜑 → (𝐹𝑀) ∈ ℝ)
3130leidd 8558 . . . . . 6 (𝜑 → (𝐹𝑀) ≤ (𝐹𝑀))
3231a1d 22 . . . . 5 (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀)))
3332a1i 9 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀))))
34 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ𝑀))
35 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
36 peano2fzr 10129 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
3734, 35, 36syl2anc 411 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
3837expr 375 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
3938imim1d 75 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))))
40 fveq2 5561 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
41 oveq1 5932 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝑘 + 1) = (𝑛 + 1))
4241fveq2d 5565 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
4340, 42breq12d 4047 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))))
44 monoord.3 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
4544ralrimiva 2570 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
4645adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
47 eluzelz 9627 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
4834, 47syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ)
49 elfzuz3 10114 . . . . . . . . . . . . . 14 ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
5035, 49syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
51 eluzp1m1 9642 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))) → (𝑁 − 1) ∈ (ℤ𝑛))
5248, 50, 51syl2anc 411 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑁 − 1) ∈ (ℤ𝑛))
53 elfzuzb 10111 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑛 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑛)))
5434, 52, 53sylanbrc 417 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...(𝑁 − 1)))
5543, 46, 54rspcdva 2873 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
5630adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑀) ∈ ℝ)
5740eleq1d 2265 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
5827adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ)
5957, 58, 37rspcdva 2873 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑛) ∈ ℝ)
60 fveq2 5561 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
6160eleq1d 2265 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ))
6261, 58, 35rspcdva 2873 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
63 letr 8126 . . . . . . . . . . 11 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑛) ∈ ℝ ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ) → (((𝐹𝑀) ≤ (𝐹𝑛) ∧ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6456, 59, 62, 63syl3anc 1249 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (((𝐹𝑀) ≤ (𝐹𝑛) ∧ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6555, 64mpan2d 428 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐹𝑀) ≤ (𝐹𝑛) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6665expr 375 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((𝐹𝑀) ≤ (𝐹𝑛) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1)))))
6766a2d 26 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1)))))
6839, 67syld 45 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1)))))
6968expcom 116 . . . . 5 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))))
7069a2d 26 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))))
718, 13, 18, 23, 33, 70uzind4 9679 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁))))
721, 71mpcom 36 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁)))
733, 72mpd 13 1 (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475   class class class wbr 4034  cfv 5259  (class class class)co 5925  cr 7895  1c1 7897   + caddc 7899  cle 8079  cmin 8214  cz 9343  cuz 9618  ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by:  monoord2  10595  ser3mono  10596  climub  11526
  Copyright terms: Public domain W3C validator