ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3id2 GIF version

Theorem seq3id2 10001
Description: The last few partial sums of a sequence that ends with all zeroes (or any element which is a right-identity for +) are all the same. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Jim Kingdon, 12-Nov-2022.)
Hypotheses
Ref Expression
seqid2.1 ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑥)
seqid2.2 (𝜑𝐾 ∈ (ℤ𝑀))
seqid2.3 (𝜑𝑁 ∈ (ℤ𝐾))
seqid2.4 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ∈ 𝑆)
seqid2.5 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑥) = 𝑍)
seq3id2.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3id2.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3id2 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐾,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑍
Allowed substitution hint:   𝑍(𝑦)

Proof of Theorem seq3id2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 seqid2.3 . . 3 (𝜑𝑁 ∈ (ℤ𝐾))
2 eluzfz2 9507 . . 3 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (𝐾...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝐾...𝑁))
4 eleq1 2151 . . . . . 6 (𝑥 = 𝐾 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝐾 ∈ (𝐾...𝑁)))
5 fveq2 5318 . . . . . . 7 (𝑥 = 𝐾 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝐾))
65eqeq2d 2100 . . . . . 6 (𝑥 = 𝐾 → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾)))
74, 6imbi12d 233 . . . . 5 (𝑥 = 𝐾 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥)) ↔ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾))))
87imbi2d 229 . . . 4 (𝑥 = 𝐾 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥))) ↔ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾)))))
9 eleq1 2151 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑛 ∈ (𝐾...𝑁)))
10 fveq2 5318 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛))
1110eqeq2d 2100 . . . . . 6 (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛)))
129, 11imbi12d 233 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥)) ↔ (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛))))
1312imbi2d 229 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛)))))
14 eleq1 2151 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝐾...𝑁) ↔ (𝑛 + 1) ∈ (𝐾...𝑁)))
15 fveq2 5318 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))
1615eqeq2d 2100 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))))
1714, 16imbi12d 233 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥)) ↔ ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))))
1817imbi2d 229 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))))))
19 eleq1 2151 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑁 ∈ (𝐾...𝑁)))
20 fveq2 5318 . . . . . . 7 (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁))
2120eqeq2d 2100 . . . . . 6 (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁)))
2219, 21imbi12d 233 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥)) ↔ (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))))
2322imbi2d 229 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁)))))
24 eqidd 2090 . . . . 5 (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾))
25242a1i 27 . . . 4 (𝐾 ∈ ℤ → (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾))))
26 peano2fzr 9512 . . . . . . . 8 ((𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁)) → 𝑛 ∈ (𝐾...𝑁))
2726adantl 272 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (𝐾...𝑁))
2827expr 368 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑛 ∈ (𝐾...𝑁)))
2928imim1d 75 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝐾)) → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛))))
30 oveq1 5673 . . . . . 6 ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛) → ((seq𝑀( + , 𝐹)‘𝐾) + (𝐹‘(𝑛 + 1))) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
31 fveqeq2 5327 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → ((𝐹𝑥) = 𝑍 ↔ (𝐹‘(𝑛 + 1)) = 𝑍))
32 seqid2.5 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑥) = 𝑍)
3332ralrimiva 2447 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑥) = 𝑍)
3433adantr 271 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ∀𝑥 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑥) = 𝑍)
35 eluzp1p1 9105 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝐾) → (𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)))
3635ad2antrl 475 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)))
37 elfzuz3 9498 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
3837ad2antll 476 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
39 elfzuzb 9495 . . . . . . . . . . 11 ((𝑛 + 1) ∈ ((𝐾 + 1)...𝑁) ↔ ((𝑛 + 1) ∈ (ℤ‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))))
4036, 38, 39sylanbrc 409 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈ ((𝐾 + 1)...𝑁))
4131, 34, 40rspcdva 2728 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝐹‘(𝑛 + 1)) = 𝑍)
4241oveq2d 5682 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝐾) + (𝐹‘(𝑛 + 1))) = ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍))
43 oveq1 5673 . . . . . . . . . . 11 (𝑥 = (seq𝑀( + , 𝐹)‘𝐾) → (𝑥 + 𝑍) = ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍))
44 id 19 . . . . . . . . . . 11 (𝑥 = (seq𝑀( + , 𝐹)‘𝐾) → 𝑥 = (seq𝑀( + , 𝐹)‘𝐾))
4543, 44eqeq12d 2103 . . . . . . . . . 10 (𝑥 = (seq𝑀( + , 𝐹)‘𝐾) → ((𝑥 + 𝑍) = 𝑥 ↔ ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍) = (seq𝑀( + , 𝐹)‘𝐾)))
46 seqid2.1 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑥)
4746ralrimiva 2447 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 (𝑥 + 𝑍) = 𝑥)
48 seqid2.4 . . . . . . . . . 10 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) ∈ 𝑆)
4945, 47, 48rspcdva 2728 . . . . . . . . 9 (𝜑 → ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍) = (seq𝑀( + , 𝐹)‘𝐾))
5049adantr 271 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝐾) + 𝑍) = (seq𝑀( + , 𝐹)‘𝐾))
5142, 50eqtr2d 2122 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹)‘𝐾) = ((seq𝑀( + , 𝐹)‘𝐾) + (𝐹‘(𝑛 + 1))))
52 simprl 499 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (ℤ𝐾))
53 seqid2.2 . . . . . . . . . 10 (𝜑𝐾 ∈ (ℤ𝑀))
5453adantr 271 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝐾 ∈ (ℤ𝑀))
55 uztrn 9096 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
5652, 54, 55syl2anc 404 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (ℤ𝑀))
57 seq3id2.f . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
5857adantlr 462 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
59 seq3id2.cl . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6059adantlr 462 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6156, 58, 60seq3p1 9945 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
6251, 61eqeq12d 2103 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)) ↔ ((seq𝑀( + , 𝐹)‘𝐾) + (𝐹‘(𝑛 + 1))) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
6330, 62syl5ibr 155 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))))
6429, 63animpimp2impd 527 . . . 4 (𝑛 ∈ (ℤ𝐾) → ((𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))))))
658, 13, 18, 23, 25, 64uzind4 9137 . . 3 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))))
661, 65mpcom 36 . 2 (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁)))
673, 66mpd 13 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1290  wcel 1439  wral 2360  cfv 5028  (class class class)co 5666  1c1 7412   + caddc 7414  cz 8811  cuz 9080  ...cfz 9485  seqcseq 9913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-ltadd 7522
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-inn 8484  df-n0 8735  df-z 8812  df-uz 9081  df-fz 9486  df-iseq 9914  df-seq3 9915
This theorem is referenced by:  fsum3cvg  10828
  Copyright terms: Public domain W3C validator