Proof of Theorem cnntr
Step | Hyp | Ref
| Expression |
1 | | cnf2 13256 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
2 | 1 | 3expia 1205 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌)) |
3 | | elpwi 3581 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝑌 → 𝑥 ⊆ 𝑌) |
4 | 3 | adantl 277 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 ⊆ 𝑌) |
5 | | toponuni 13064 |
. . . . . . 7
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
6 | 5 | ad2antlr 489 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑌 = ∪ 𝐾) |
7 | 4, 6 | sseqtrd 3191 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 ⊆ ∪ 𝐾) |
8 | | eqid 2175 |
. . . . . . 7
⊢ ∪ 𝐾 =
∪ 𝐾 |
9 | 8 | cnntri 13275 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ⊆ ∪ 𝐾) → (◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))) |
10 | 9 | expcom 116 |
. . . . 5
⊢ (𝑥 ⊆ ∪ 𝐾
→ (𝐹 ∈ (𝐽 Cn 𝐾) → (◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)))) |
11 | 7, 10 | syl 14 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)))) |
12 | 11 | ralrimdva 2555 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)))) |
13 | 2, 12 | jcad 307 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))))) |
14 | | toponss 13075 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥 ∈ 𝐾) → 𝑥 ⊆ 𝑌) |
15 | | velpw 3579 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝒫 𝑌 ↔ 𝑥 ⊆ 𝑌) |
16 | 14, 15 | sylibr 134 |
. . . . . . . . 9
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥 ∈ 𝐾) → 𝑥 ∈ 𝒫 𝑌) |
17 | 16 | ex 115 |
. . . . . . . 8
⊢ (𝐾 ∈ (TopOn‘𝑌) → (𝑥 ∈ 𝐾 → 𝑥 ∈ 𝒫 𝑌)) |
18 | 17 | ad2antlr 489 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝑥 ∈ 𝐾 → 𝑥 ∈ 𝒫 𝑌)) |
19 | 18 | imim1d 75 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝑥 ∈ 𝒫 𝑌 → (◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))) → (𝑥 ∈ 𝐾 → (◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))))) |
20 | | topontop 13063 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
21 | 20 | ad3antrrr 492 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → 𝐽 ∈ Top) |
22 | | cnvimass 4984 |
. . . . . . . . . . 11
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
23 | | fdm 5363 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) |
24 | 23 | ad2antlr 489 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → dom 𝐹 = 𝑋) |
25 | | toponuni 13064 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
26 | 25 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → 𝑋 = ∪ 𝐽) |
27 | 24, 26 | eqtrd 2208 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → dom 𝐹 = ∪ 𝐽) |
28 | 22, 27 | sseqtrid 3203 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ 𝑥) ⊆ ∪ 𝐽) |
29 | | eqid 2175 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
30 | 29 | ntrss2 13172 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑥) ⊆ ∪ 𝐽) → ((int‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ 𝑥)) |
31 | 21, 28, 30 | syl2anc 411 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → ((int‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ 𝑥)) |
32 | | eqss 3168 |
. . . . . . . . . 10
⊢
(((int‘𝐽)‘(◡𝐹 “ 𝑥)) = (◡𝐹 “ 𝑥) ↔ (((int‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ 𝑥) ∧ (◡𝐹 “ 𝑥) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)))) |
33 | 32 | baib 919 |
. . . . . . . . 9
⊢
(((int‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ 𝑥) → (((int‘𝐽)‘(◡𝐹 “ 𝑥)) = (◡𝐹 “ 𝑥) ↔ (◡𝐹 “ 𝑥) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)))) |
34 | 31, 33 | syl 14 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → (((int‘𝐽)‘(◡𝐹 “ 𝑥)) = (◡𝐹 “ 𝑥) ↔ (◡𝐹 “ 𝑥) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)))) |
35 | 29 | isopn3 13176 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑥) ⊆ ∪ 𝐽) → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ ((int‘𝐽)‘(◡𝐹 “ 𝑥)) = (◡𝐹 “ 𝑥))) |
36 | 21, 28, 35 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ ((int‘𝐽)‘(◡𝐹 “ 𝑥)) = (◡𝐹 “ 𝑥))) |
37 | | topontop 13063 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
38 | 37 | ad3antlr 493 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → 𝐾 ∈ Top) |
39 | | isopn3i 13186 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Top ∧ 𝑥 ∈ 𝐾) → ((int‘𝐾)‘𝑥) = 𝑥) |
40 | 38, 39 | sylancom 420 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → ((int‘𝐾)‘𝑥) = 𝑥) |
41 | 40 | imaeq2d 4963 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ ((int‘𝐾)‘𝑥)) = (◡𝐹 “ 𝑥)) |
42 | 41 | sseq1d 3182 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → ((◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)) ↔ (◡𝐹 “ 𝑥) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)))) |
43 | 34, 36, 42 | 3bitr4rd 221 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → ((◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)) ↔ (◡𝐹 “ 𝑥) ∈ 𝐽)) |
44 | 43 | pm5.74da 443 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝑥 ∈ 𝐾 → (◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))) ↔ (𝑥 ∈ 𝐾 → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
45 | 19, 44 | sylibd 149 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝑥 ∈ 𝒫 𝑌 → (◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))) → (𝑥 ∈ 𝐾 → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
46 | 45 | ralimdv2 2545 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)) → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
47 | 46 | imdistanda 448 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
48 | | iscn 13248 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
49 | 47, 48 | sylibrd 169 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾))) |
50 | 13, 49 | impbid 129 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))))) |