Proof of Theorem cnntr
| Step | Hyp | Ref
| Expression |
| 1 | | cnf2 14441 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| 2 | 1 | 3expia 1207 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌)) |
| 3 | | elpwi 3614 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝑌 → 𝑥 ⊆ 𝑌) |
| 4 | 3 | adantl 277 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 ⊆ 𝑌) |
| 5 | | toponuni 14251 |
. . . . . . 7
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
| 6 | 5 | ad2antlr 489 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑌 = ∪ 𝐾) |
| 7 | 4, 6 | sseqtrd 3221 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 ⊆ ∪ 𝐾) |
| 8 | | eqid 2196 |
. . . . . . 7
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 9 | 8 | cnntri 14460 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ⊆ ∪ 𝐾) → (◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))) |
| 10 | 9 | expcom 116 |
. . . . 5
⊢ (𝑥 ⊆ ∪ 𝐾
→ (𝐹 ∈ (𝐽 Cn 𝐾) → (◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)))) |
| 11 | 7, 10 | syl 14 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → (◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)))) |
| 12 | 11 | ralrimdva 2577 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)))) |
| 13 | 2, 12 | jcad 307 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))))) |
| 14 | | toponss 14262 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥 ∈ 𝐾) → 𝑥 ⊆ 𝑌) |
| 15 | | velpw 3612 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝒫 𝑌 ↔ 𝑥 ⊆ 𝑌) |
| 16 | 14, 15 | sylibr 134 |
. . . . . . . . 9
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥 ∈ 𝐾) → 𝑥 ∈ 𝒫 𝑌) |
| 17 | 16 | ex 115 |
. . . . . . . 8
⊢ (𝐾 ∈ (TopOn‘𝑌) → (𝑥 ∈ 𝐾 → 𝑥 ∈ 𝒫 𝑌)) |
| 18 | 17 | ad2antlr 489 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝑥 ∈ 𝐾 → 𝑥 ∈ 𝒫 𝑌)) |
| 19 | 18 | imim1d 75 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝑥 ∈ 𝒫 𝑌 → (◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))) → (𝑥 ∈ 𝐾 → (◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))))) |
| 20 | | topontop 14250 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 21 | 20 | ad3antrrr 492 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → 𝐽 ∈ Top) |
| 22 | | cnvimass 5032 |
. . . . . . . . . . 11
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
| 23 | | fdm 5413 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) |
| 24 | 23 | ad2antlr 489 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → dom 𝐹 = 𝑋) |
| 25 | | toponuni 14251 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 26 | 25 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → 𝑋 = ∪ 𝐽) |
| 27 | 24, 26 | eqtrd 2229 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → dom 𝐹 = ∪ 𝐽) |
| 28 | 22, 27 | sseqtrid 3233 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ 𝑥) ⊆ ∪ 𝐽) |
| 29 | | eqid 2196 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 30 | 29 | ntrss2 14357 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑥) ⊆ ∪ 𝐽) → ((int‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ 𝑥)) |
| 31 | 21, 28, 30 | syl2anc 411 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → ((int‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ 𝑥)) |
| 32 | | eqss 3198 |
. . . . . . . . . 10
⊢
(((int‘𝐽)‘(◡𝐹 “ 𝑥)) = (◡𝐹 “ 𝑥) ↔ (((int‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ 𝑥) ∧ (◡𝐹 “ 𝑥) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)))) |
| 33 | 32 | baib 920 |
. . . . . . . . 9
⊢
(((int‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ 𝑥) → (((int‘𝐽)‘(◡𝐹 “ 𝑥)) = (◡𝐹 “ 𝑥) ↔ (◡𝐹 “ 𝑥) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)))) |
| 34 | 31, 33 | syl 14 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → (((int‘𝐽)‘(◡𝐹 “ 𝑥)) = (◡𝐹 “ 𝑥) ↔ (◡𝐹 “ 𝑥) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)))) |
| 35 | 29 | isopn3 14361 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑥) ⊆ ∪ 𝐽) → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ ((int‘𝐽)‘(◡𝐹 “ 𝑥)) = (◡𝐹 “ 𝑥))) |
| 36 | 21, 28, 35 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ ((int‘𝐽)‘(◡𝐹 “ 𝑥)) = (◡𝐹 “ 𝑥))) |
| 37 | | topontop 14250 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
| 38 | 37 | ad3antlr 493 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → 𝐾 ∈ Top) |
| 39 | | isopn3i 14371 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Top ∧ 𝑥 ∈ 𝐾) → ((int‘𝐾)‘𝑥) = 𝑥) |
| 40 | 38, 39 | sylancom 420 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → ((int‘𝐾)‘𝑥) = 𝑥) |
| 41 | 40 | imaeq2d 5009 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ ((int‘𝐾)‘𝑥)) = (◡𝐹 “ 𝑥)) |
| 42 | 41 | sseq1d 3212 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → ((◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)) ↔ (◡𝐹 “ 𝑥) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)))) |
| 43 | 34, 36, 42 | 3bitr4rd 221 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐾) → ((◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)) ↔ (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 44 | 43 | pm5.74da 443 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝑥 ∈ 𝐾 → (◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))) ↔ (𝑥 ∈ 𝐾 → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 45 | 19, 44 | sylibd 149 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝑥 ∈ 𝒫 𝑌 → (◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))) → (𝑥 ∈ 𝐾 → (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 46 | 45 | ralimdv2 2567 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥)) → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽)) |
| 47 | 46 | imdistanda 448 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 48 | | iscn 14433 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
| 49 | 47, 48 | sylibrd 169 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾))) |
| 50 | 13, 49 | impbid 129 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))))) |