ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffres GIF version

Theorem caucvgsrlemoffres 7913
Description: Lemma for caucvgsr 7915. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
caucvgsrlembnd.offset 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
Assertion
Ref Expression
caucvgsrlemoffres (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
Distinct variable groups:   𝐴,𝑎,𝑘   𝑥,𝐴,𝑗,𝑘   𝐴,𝑚,𝑘   𝑦,𝐴,𝑗,𝑘,𝑥   𝐹,𝑎,𝑘   𝑦,𝐹   𝑥,𝐺,𝑗,𝑘   𝐺,𝑙,𝑢,𝑗,𝑘   𝑚,𝐺,𝑛,𝑘   𝑛,𝑙,𝑢   𝑛,𝑎,𝜑,𝑘   𝜑,𝑥,𝑗   𝜑,𝑚,𝑛,𝑎
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑙)   𝐴(𝑢,𝑛,𝑙)   𝐹(𝑥,𝑢,𝑗,𝑚,𝑛,𝑙)   𝐺(𝑦,𝑎)

Proof of Theorem caucvgsrlemoffres
Dummy variables 𝑖 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsr.f . . . 4 (𝜑𝐹:NR)
2 caucvgsr.cau . . . 4 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
3 caucvgsrlembnd.bnd . . . 4 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
4 caucvgsrlembnd.offset . . . 4 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
51, 2, 3, 4caucvgsrlemofff 7910 . . 3 (𝜑𝐺:NR)
61, 2, 3, 4caucvgsrlemoffcau 7911 . . 3 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
71, 2, 3, 4caucvgsrlemoffgt1 7912 . . 3 (𝜑 → ∀𝑚N 1R <R (𝐺𝑚))
85, 6, 7caucvgsrlemgt1 7908 . 2 (𝜑 → ∃𝑧R𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))))
9 simprl 529 . . . . 5 ((𝜑 ∧ (𝑧R ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))))) → 𝑧R)
103caucvgsrlemasr 7903 . . . . . 6 (𝜑𝐴R)
1110adantr 276 . . . . 5 ((𝜑 ∧ (𝑧R ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))))) → 𝐴R)
12 addclsr 7866 . . . . 5 ((𝑧R𝐴R) → (𝑧 +R 𝐴) ∈ R)
139, 11, 12syl2anc 411 . . . 4 ((𝜑 ∧ (𝑧R ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))))) → (𝑧 +R 𝐴) ∈ R)
14 m1r 7865 . . . 4 -1RR
15 addclsr 7866 . . . 4 (((𝑧 +R 𝐴) ∈ R ∧ -1RR) → ((𝑧 +R 𝐴) +R -1R) ∈ R)
1613, 14, 15sylancl 413 . . 3 ((𝜑 ∧ (𝑧R ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))))) → ((𝑧 +R 𝐴) +R -1R) ∈ R)
17 ltasrg 7883 . . . . . . . . . . . . . . . 16 ((𝑓R𝑔RR) → (𝑓 <R 𝑔 ↔ ( +R 𝑓) <R ( +R 𝑔)))
1817adantl 277 . . . . . . . . . . . . . . 15 (((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) ∧ (𝑓R𝑔RR)) → (𝑓 <R 𝑔 ↔ ( +R 𝑓) <R ( +R 𝑔)))
195ad3antrrr 492 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → 𝐺:NR)
20 simpr 110 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → 𝑖N)
2119, 20ffvelcdmd 5716 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝐺𝑖) ∈ R)
22 simpllr 534 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → 𝑧R)
23 simplr 528 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → 𝑥R)
24 addclsr 7866 . . . . . . . . . . . . . . . 16 ((𝑧R𝑥R) → (𝑧 +R 𝑥) ∈ R)
2522, 23, 24syl2anc 411 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝑧 +R 𝑥) ∈ R)
2610ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → 𝐴R)
27 addcomsrg 7868 . . . . . . . . . . . . . . . 16 ((𝑓R𝑔R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
2827adantl 277 . . . . . . . . . . . . . . 15 (((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) ∧ (𝑓R𝑔R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
2918, 21, 25, 26, 28caovord2d 6116 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐺𝑖) <R (𝑧 +R 𝑥) ↔ ((𝐺𝑖) +R 𝐴) <R ((𝑧 +R 𝑥) +R 𝐴)))
301, 2, 3, 4caucvgsrlemoffval 7909 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖N) → ((𝐺𝑖) +R 𝐴) = ((𝐹𝑖) +R 1R))
3130adantlr 477 . . . . . . . . . . . . . . . 16 (((𝜑𝑧R) ∧ 𝑖N) → ((𝐺𝑖) +R 𝐴) = ((𝐹𝑖) +R 1R))
3231adantlr 477 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐺𝑖) +R 𝐴) = ((𝐹𝑖) +R 1R))
3332breq1d 4054 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐺𝑖) +R 𝐴) <R ((𝑧 +R 𝑥) +R 𝐴) ↔ ((𝐹𝑖) +R 1R) <R ((𝑧 +R 𝑥) +R 𝐴)))
3429, 33bitrd 188 . . . . . . . . . . . . 13 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐺𝑖) <R (𝑧 +R 𝑥) ↔ ((𝐹𝑖) +R 1R) <R ((𝑧 +R 𝑥) +R 𝐴)))
35 addasssrg 7869 . . . . . . . . . . . . . . . 16 ((𝑓R𝑔RR) → ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R )))
3635adantl 277 . . . . . . . . . . . . . . 15 (((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) ∧ (𝑓R𝑔RR)) → ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R )))
3722, 23, 26, 28, 36caov32d 6127 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝑧 +R 𝑥) +R 𝐴) = ((𝑧 +R 𝐴) +R 𝑥))
3837breq2d 4056 . . . . . . . . . . . . 13 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 1R) <R ((𝑧 +R 𝑥) +R 𝐴) ↔ ((𝐹𝑖) +R 1R) <R ((𝑧 +R 𝐴) +R 𝑥)))
391ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧R) ∧ 𝑥R) → 𝐹:NR)
4039ffvelcdmda 5715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝐹𝑖) ∈ R)
41 1sr 7864 . . . . . . . . . . . . . . . 16 1RR
42 addclsr 7866 . . . . . . . . . . . . . . . 16 (((𝐹𝑖) ∈ R ∧ 1RR) → ((𝐹𝑖) +R 1R) ∈ R)
4340, 41, 42sylancl 413 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐹𝑖) +R 1R) ∈ R)
4422, 26, 12syl2anc 411 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝑧 +R 𝐴) ∈ R)
45 addclsr 7866 . . . . . . . . . . . . . . . 16 (((𝑧 +R 𝐴) ∈ R𝑥R) → ((𝑧 +R 𝐴) +R 𝑥) ∈ R)
4644, 23, 45syl2anc 411 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝑧 +R 𝐴) +R 𝑥) ∈ R)
4714a1i 9 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → -1RR)
4818, 43, 46, 47, 28caovord2d 6116 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 1R) <R ((𝑧 +R 𝐴) +R 𝑥) ↔ (((𝐹𝑖) +R 1R) +R -1R) <R (((𝑧 +R 𝐴) +R 𝑥) +R -1R)))
4941a1i 9 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → 1RR)
50 addasssrg 7869 . . . . . . . . . . . . . . . . 17 (((𝐹𝑖) ∈ R ∧ 1RR ∧ -1RR) → (((𝐹𝑖) +R 1R) +R -1R) = ((𝐹𝑖) +R (1R +R -1R)))
5140, 49, 47, 50syl3anc 1250 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 1R) +R -1R) = ((𝐹𝑖) +R (1R +R -1R)))
52 addcomsrg 7868 . . . . . . . . . . . . . . . . . . . 20 ((1RR ∧ -1RR) → (1R +R -1R) = (-1R +R 1R))
5341, 14, 52mp2an 426 . . . . . . . . . . . . . . . . . . 19 (1R +R -1R) = (-1R +R 1R)
54 m1p1sr 7873 . . . . . . . . . . . . . . . . . . 19 (-1R +R 1R) = 0R
5553, 54eqtri 2226 . . . . . . . . . . . . . . . . . 18 (1R +R -1R) = 0R
5655oveq2i 5955 . . . . . . . . . . . . . . . . 17 ((𝐹𝑖) +R (1R +R -1R)) = ((𝐹𝑖) +R 0R)
57 0idsr 7880 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑖) ∈ R → ((𝐹𝑖) +R 0R) = (𝐹𝑖))
5840, 57syl 14 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐹𝑖) +R 0R) = (𝐹𝑖))
5956, 58eqtrid 2250 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐹𝑖) +R (1R +R -1R)) = (𝐹𝑖))
6051, 59eqtrd 2238 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 1R) +R -1R) = (𝐹𝑖))
6144, 23, 47, 28, 36caov32d 6127 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝑧 +R 𝐴) +R 𝑥) +R -1R) = (((𝑧 +R 𝐴) +R -1R) +R 𝑥))
6260, 61breq12d 4057 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((((𝐹𝑖) +R 1R) +R -1R) <R (((𝑧 +R 𝐴) +R 𝑥) +R -1R) ↔ (𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥)))
6348, 62bitrd 188 . . . . . . . . . . . . 13 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 1R) <R ((𝑧 +R 𝐴) +R 𝑥) ↔ (𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥)))
6434, 38, 633bitrd 214 . . . . . . . . . . . 12 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐺𝑖) <R (𝑧 +R 𝑥) ↔ (𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥)))
6564biimpd 144 . . . . . . . . . . 11 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐺𝑖) <R (𝑧 +R 𝑥) → (𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥)))
66 addclsr 7866 . . . . . . . . . . . . . . . 16 (((𝐺𝑖) ∈ R𝑥R) → ((𝐺𝑖) +R 𝑥) ∈ R)
6721, 23, 66syl2anc 411 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐺𝑖) +R 𝑥) ∈ R)
6818, 22, 67, 26, 28caovord2d 6116 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝑧 <R ((𝐺𝑖) +R 𝑥) ↔ (𝑧 +R 𝐴) <R (((𝐺𝑖) +R 𝑥) +R 𝐴)))
6921, 23, 26, 28, 36caov32d 6127 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐺𝑖) +R 𝑥) +R 𝐴) = (((𝐺𝑖) +R 𝐴) +R 𝑥))
7032oveq1d 5959 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐺𝑖) +R 𝐴) +R 𝑥) = (((𝐹𝑖) +R 1R) +R 𝑥))
7169, 70eqtrd 2238 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐺𝑖) +R 𝑥) +R 𝐴) = (((𝐹𝑖) +R 1R) +R 𝑥))
7271breq2d 4056 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝑧 +R 𝐴) <R (((𝐺𝑖) +R 𝑥) +R 𝐴) ↔ (𝑧 +R 𝐴) <R (((𝐹𝑖) +R 1R) +R 𝑥)))
7368, 72bitrd 188 . . . . . . . . . . . . 13 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝑧 <R ((𝐺𝑖) +R 𝑥) ↔ (𝑧 +R 𝐴) <R (((𝐹𝑖) +R 1R) +R 𝑥)))
74 addclsr 7866 . . . . . . . . . . . . . . 15 ((((𝐹𝑖) +R 1R) ∈ R𝑥R) → (((𝐹𝑖) +R 1R) +R 𝑥) ∈ R)
7543, 23, 74syl2anc 411 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 1R) +R 𝑥) ∈ R)
7618, 44, 75, 47, 28caovord2d 6116 . . . . . . . . . . . . 13 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝑧 +R 𝐴) <R (((𝐹𝑖) +R 1R) +R 𝑥) ↔ ((𝑧 +R 𝐴) +R -1R) <R ((((𝐹𝑖) +R 1R) +R 𝑥) +R -1R)))
7740, 49, 23, 28, 36caov32d 6127 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 1R) +R 𝑥) = (((𝐹𝑖) +R 𝑥) +R 1R))
7877oveq1d 5959 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((((𝐹𝑖) +R 1R) +R 𝑥) +R -1R) = ((((𝐹𝑖) +R 𝑥) +R 1R) +R -1R))
79 addclsr 7866 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑖) ∈ R𝑥R) → ((𝐹𝑖) +R 𝑥) ∈ R)
8040, 23, 79syl2anc 411 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐹𝑖) +R 𝑥) ∈ R)
81 addasssrg 7869 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑖) +R 𝑥) ∈ R ∧ 1RR ∧ -1RR) → ((((𝐹𝑖) +R 𝑥) +R 1R) +R -1R) = (((𝐹𝑖) +R 𝑥) +R (1R +R -1R)))
8280, 49, 47, 81syl3anc 1250 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((((𝐹𝑖) +R 𝑥) +R 1R) +R -1R) = (((𝐹𝑖) +R 𝑥) +R (1R +R -1R)))
8378, 82eqtrd 2238 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((((𝐹𝑖) +R 1R) +R 𝑥) +R -1R) = (((𝐹𝑖) +R 𝑥) +R (1R +R -1R)))
8455oveq2i 5955 . . . . . . . . . . . . . . . 16 (((𝐹𝑖) +R 𝑥) +R (1R +R -1R)) = (((𝐹𝑖) +R 𝑥) +R 0R)
8583, 84eqtrdi 2254 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((((𝐹𝑖) +R 1R) +R 𝑥) +R -1R) = (((𝐹𝑖) +R 𝑥) +R 0R))
86 0idsr 7880 . . . . . . . . . . . . . . . 16 (((𝐹𝑖) +R 𝑥) ∈ R → (((𝐹𝑖) +R 𝑥) +R 0R) = ((𝐹𝑖) +R 𝑥))
8780, 86syl 14 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 𝑥) +R 0R) = ((𝐹𝑖) +R 𝑥))
8885, 87eqtrd 2238 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((((𝐹𝑖) +R 1R) +R 𝑥) +R -1R) = ((𝐹𝑖) +R 𝑥))
8988breq2d 4056 . . . . . . . . . . . . 13 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝑧 +R 𝐴) +R -1R) <R ((((𝐹𝑖) +R 1R) +R 𝑥) +R -1R) ↔ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥)))
9073, 76, 893bitrd 214 . . . . . . . . . . . 12 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝑧 <R ((𝐺𝑖) +R 𝑥) ↔ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥)))
9190biimpd 144 . . . . . . . . . . 11 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝑧 <R ((𝐺𝑖) +R 𝑥) → ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥)))
9265, 91anim12d 335 . . . . . . . . . 10 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)) → ((𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥))))
9392imim2d 54 . . . . . . . . 9 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥))) → (𝑗 <N 𝑖 → ((𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥)))))
9493ralimdva 2573 . . . . . . . 8 (((𝜑𝑧R) ∧ 𝑥R) → (∀𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥))) → ∀𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥)))))
95 breq2 4048 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑗 <N 𝑖𝑗 <N 𝑘))
96 fveq2 5576 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
9796breq1d 4054 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ↔ (𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥)))
9896oveq1d 5959 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝐹𝑖) +R 𝑥) = ((𝐹𝑘) +R 𝑥))
9998breq2d 4056 . . . . . . . . . . 11 (𝑖 = 𝑘 → (((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥) ↔ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))
10097, 99anbi12d 473 . . . . . . . . . 10 (𝑖 = 𝑘 → (((𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥)) ↔ ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))
10195, 100imbi12d 234 . . . . . . . . 9 (𝑖 = 𝑘 → ((𝑗 <N 𝑖 → ((𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥))) ↔ (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))))
102101cbvralv 2738 . . . . . . . 8 (∀𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥))) ↔ ∀𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))
10394, 102imbitrdi 161 . . . . . . 7 (((𝜑𝑧R) ∧ 𝑥R) → (∀𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥))) → ∀𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))))
104103reximdv 2607 . . . . . 6 (((𝜑𝑧R) ∧ 𝑥R) → (∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥))) → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))))
105104imim2d 54 . . . . 5 (((𝜑𝑧R) ∧ 𝑥R) → ((0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))) → (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))))
106105ralimdva 2573 . . . 4 ((𝜑𝑧R) → (∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))) → ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))))
107106impr 379 . . 3 ((𝜑 ∧ (𝑧R ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))))) → ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))))
108 oveq1 5951 . . . . . . . . . 10 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → (𝑦 +R 𝑥) = (((𝑧 +R 𝐴) +R -1R) +R 𝑥))
109108breq2d 4056 . . . . . . . . 9 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → ((𝐹𝑘) <R (𝑦 +R 𝑥) ↔ (𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥)))
110 breq1 4047 . . . . . . . . 9 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → (𝑦 <R ((𝐹𝑘) +R 𝑥) ↔ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))
111109, 110anbi12d 473 . . . . . . . 8 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → (((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)) ↔ ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))
112111imbi2d 230 . . . . . . 7 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → ((𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥))) ↔ (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))))
113112rexralbidv 2532 . . . . . 6 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → (∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥))) ↔ ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))))
114113imbi2d 230 . . . . 5 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → ((0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))) ↔ (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))))
115114ralbidv 2506 . . . 4 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → (∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))) ↔ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))))
116115rspcev 2877 . . 3 ((((𝑧 +R 𝐴) +R -1R) ∈ R ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))) → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
11716, 107, 116syl2anc 411 . 2 ((𝜑 ∧ (𝑧R ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))))) → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
1188, 117rexlimddv 2628 1 (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2176  {cab 2191  wral 2484  wrex 2485  cop 3636   class class class wbr 4044  cmpt 4105  wf 5267  cfv 5271  (class class class)co 5944  1oc1o 6495  [cec 6618  Ncnpi 7385   <N clti 7388   ~Q ceq 7392  *Qcrq 7397   <Q cltq 7398  1Pc1p 7405   +P cpp 7406   ~R cer 7409  Rcnr 7410  0Rc0r 7411  1Rc1r 7412  -1Rcm1r 7413   +R cplr 7414   ·R cmr 7415   <R cltr 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-i1p 7580  df-iplp 7581  df-imp 7582  df-iltp 7583  df-enr 7839  df-nr 7840  df-plr 7841  df-mr 7842  df-ltr 7843  df-0r 7844  df-1r 7845  df-m1r 7846
This theorem is referenced by:  caucvgsrlembnd  7914
  Copyright terms: Public domain W3C validator