Step | Hyp | Ref
| Expression |
1 | | fveq2 5486 |
. . . . . 6
⊢ (𝑥 = 0 → (!‘𝑥) =
(!‘0)) |
2 | 1 | breq2d 3994 |
. . . . 5
⊢ (𝑥 = 0 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘0))) |
3 | | breq2 3986 |
. . . . 5
⊢ (𝑥 = 0 → (𝑃 ≤ 𝑥 ↔ 𝑃 ≤ 0)) |
4 | 2, 3 | imbi12d 233 |
. . . 4
⊢ (𝑥 = 0 → ((𝑃 ∥ (!‘𝑥) → 𝑃 ≤ 𝑥) ↔ (𝑃 ∥ (!‘0) → 𝑃 ≤ 0))) |
5 | 4 | imbi2d 229 |
. . 3
⊢ (𝑥 = 0 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃 ≤ 𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘0) → 𝑃 ≤ 0)))) |
6 | | fveq2 5486 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (!‘𝑥) = (!‘𝑘)) |
7 | 6 | breq2d 3994 |
. . . . 5
⊢ (𝑥 = 𝑘 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘𝑘))) |
8 | | breq2 3986 |
. . . . 5
⊢ (𝑥 = 𝑘 → (𝑃 ≤ 𝑥 ↔ 𝑃 ≤ 𝑘)) |
9 | 7, 8 | imbi12d 233 |
. . . 4
⊢ (𝑥 = 𝑘 → ((𝑃 ∥ (!‘𝑥) → 𝑃 ≤ 𝑥) ↔ (𝑃 ∥ (!‘𝑘) → 𝑃 ≤ 𝑘))) |
10 | 9 | imbi2d 229 |
. . 3
⊢ (𝑥 = 𝑘 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃 ≤ 𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑘) → 𝑃 ≤ 𝑘)))) |
11 | | fveq2 5486 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (!‘𝑥) = (!‘(𝑘 + 1))) |
12 | 11 | breq2d 3994 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘(𝑘 + 1)))) |
13 | | breq2 3986 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → (𝑃 ≤ 𝑥 ↔ 𝑃 ≤ (𝑘 + 1))) |
14 | 12, 13 | imbi12d 233 |
. . . 4
⊢ (𝑥 = (𝑘 + 1) → ((𝑃 ∥ (!‘𝑥) → 𝑃 ≤ 𝑥) ↔ (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))) |
15 | 14 | imbi2d 229 |
. . 3
⊢ (𝑥 = (𝑘 + 1) → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃 ≤ 𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1))))) |
16 | | fveq2 5486 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁)) |
17 | 16 | breq2d 3994 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘𝑁))) |
18 | | breq2 3986 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝑃 ≤ 𝑥 ↔ 𝑃 ≤ 𝑁)) |
19 | 17, 18 | imbi12d 233 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝑃 ∥ (!‘𝑥) → 𝑃 ≤ 𝑥) ↔ (𝑃 ∥ (!‘𝑁) → 𝑃 ≤ 𝑁))) |
20 | 19 | imbi2d 229 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃 ≤ 𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑁) → 𝑃 ≤ 𝑁)))) |
21 | | fac0 10641 |
. . . . 5
⊢
(!‘0) = 1 |
22 | 21 | breq2i 3990 |
. . . 4
⊢ (𝑃 ∥ (!‘0) ↔
𝑃 ∥
1) |
23 | | nprmdvds1 12072 |
. . . . 5
⊢ (𝑃 ∈ ℙ → ¬
𝑃 ∥
1) |
24 | 23 | pm2.21d 609 |
. . . 4
⊢ (𝑃 ∈ ℙ → (𝑃 ∥ 1 → 𝑃 ≤ 0)) |
25 | 22, 24 | syl5bi 151 |
. . 3
⊢ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘0) →
𝑃 ≤ 0)) |
26 | | facp1 10643 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (!‘(𝑘 + 1)) =
((!‘𝑘) ·
(𝑘 + 1))) |
27 | 26 | adantr 274 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (!‘(𝑘 + 1)) =
((!‘𝑘) ·
(𝑘 + 1))) |
28 | 27 | breq2d 3994 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (𝑃 ∥
(!‘(𝑘 + 1)) ↔
𝑃 ∥ ((!‘𝑘) · (𝑘 + 1)))) |
29 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ 𝑃 ∈
ℙ) |
30 | | faccl 10648 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
31 | 30 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (!‘𝑘) ∈
ℕ) |
32 | 31 | nnzd 9312 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (!‘𝑘) ∈
ℤ) |
33 | | nn0p1nn 9153 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ) |
34 | 33 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (𝑘 + 1) ∈
ℕ) |
35 | 34 | nnzd 9312 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (𝑘 + 1) ∈
ℤ) |
36 | | euclemma 12078 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧
(!‘𝑘) ∈ ℤ
∧ (𝑘 + 1) ∈
ℤ) → (𝑃 ∥
((!‘𝑘) ·
(𝑘 + 1)) ↔ (𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1)))) |
37 | 29, 32, 35, 36 | syl3anc 1228 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (𝑃 ∥
((!‘𝑘) ·
(𝑘 + 1)) ↔ (𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1)))) |
38 | 28, 37 | bitrd 187 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (𝑃 ∥
(!‘(𝑘 + 1)) ↔
(𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1)))) |
39 | | nn0re 9123 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℝ) |
40 | 39 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ 𝑘 ∈
ℝ) |
41 | 40 | lep1d 8826 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ 𝑘 ≤ (𝑘 + 1)) |
42 | | prmz 12043 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
43 | 42 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ 𝑃 ∈
ℤ) |
44 | 43 | zred 9313 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ 𝑃 ∈
ℝ) |
45 | 34 | nnred 8870 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (𝑘 + 1) ∈
ℝ) |
46 | | letr 7981 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) →
((𝑃 ≤ 𝑘 ∧ 𝑘 ≤ (𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1))) |
47 | 44, 40, 45, 46 | syl3anc 1228 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ ((𝑃 ≤ 𝑘 ∧ 𝑘 ≤ (𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1))) |
48 | 41, 47 | mpan2d 425 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (𝑃 ≤ 𝑘 → 𝑃 ≤ (𝑘 + 1))) |
49 | 48 | imim2d 54 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ ((𝑃 ∥
(!‘𝑘) → 𝑃 ≤ 𝑘) → (𝑃 ∥ (!‘𝑘) → 𝑃 ≤ (𝑘 + 1)))) |
50 | 49 | com23 78 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (𝑃 ∥
(!‘𝑘) → ((𝑃 ∥ (!‘𝑘) → 𝑃 ≤ 𝑘) → 𝑃 ≤ (𝑘 + 1)))) |
51 | | dvdsle 11782 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℤ ∧ (𝑘 + 1) ∈ ℕ) →
(𝑃 ∥ (𝑘 + 1) → 𝑃 ≤ (𝑘 + 1))) |
52 | 43, 34, 51 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (𝑃 ∥ (𝑘 + 1) → 𝑃 ≤ (𝑘 + 1))) |
53 | 52 | a1dd 48 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (𝑃 ∥ (𝑘 + 1) → ((𝑃 ∥ (!‘𝑘) → 𝑃 ≤ 𝑘) → 𝑃 ≤ (𝑘 + 1)))) |
54 | 50, 53 | jaod 707 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ ((𝑃 ∥
(!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1)) → ((𝑃 ∥ (!‘𝑘) → 𝑃 ≤ 𝑘) → 𝑃 ≤ (𝑘 + 1)))) |
55 | 38, 54 | sylbid 149 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (𝑃 ∥
(!‘(𝑘 + 1)) →
((𝑃 ∥ (!‘𝑘) → 𝑃 ≤ 𝑘) → 𝑃 ≤ (𝑘 + 1)))) |
56 | 55 | com23 78 |
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ ((𝑃 ∥
(!‘𝑘) → 𝑃 ≤ 𝑘) → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))) |
57 | 56 | ex 114 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (𝑃 ∈ ℙ
→ ((𝑃 ∥
(!‘𝑘) → 𝑃 ≤ 𝑘) → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1))))) |
58 | 57 | a2d 26 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ ((𝑃 ∈ ℙ
→ (𝑃 ∥
(!‘𝑘) → 𝑃 ≤ 𝑘)) → (𝑃 ∈ ℙ → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1))))) |
59 | 5, 10, 15, 20, 25, 58 | nn0ind 9305 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝑃 ∈ ℙ
→ (𝑃 ∥
(!‘𝑁) → 𝑃 ≤ 𝑁))) |
60 | 59 | 3imp 1183 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝑃 ∈ ℙ
∧ 𝑃 ∥
(!‘𝑁)) → 𝑃 ≤ 𝑁) |