ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmfac1 GIF version

Theorem prmfac1 12660
Description: The factorial of a number only contains primes less than the base. (Contributed by Mario Carneiro, 6-Mar-2014.)
Assertion
Ref Expression
prmfac1 ((𝑁 ∈ ℕ0𝑃 ∈ ℙ ∧ 𝑃 ∥ (!‘𝑁)) → 𝑃𝑁)

Proof of Theorem prmfac1
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5623 . . . . . 6 (𝑥 = 0 → (!‘𝑥) = (!‘0))
21breq2d 4094 . . . . 5 (𝑥 = 0 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘0)))
3 breq2 4086 . . . . 5 (𝑥 = 0 → (𝑃𝑥𝑃 ≤ 0))
42, 3imbi12d 234 . . . 4 (𝑥 = 0 → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘0) → 𝑃 ≤ 0)))
54imbi2d 230 . . 3 (𝑥 = 0 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘0) → 𝑃 ≤ 0))))
6 fveq2 5623 . . . . . 6 (𝑥 = 𝑘 → (!‘𝑥) = (!‘𝑘))
76breq2d 4094 . . . . 5 (𝑥 = 𝑘 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘𝑘)))
8 breq2 4086 . . . . 5 (𝑥 = 𝑘 → (𝑃𝑥𝑃𝑘))
97, 8imbi12d 234 . . . 4 (𝑥 = 𝑘 → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘𝑘) → 𝑃𝑘)))
109imbi2d 230 . . 3 (𝑥 = 𝑘 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑘) → 𝑃𝑘))))
11 fveq2 5623 . . . . . 6 (𝑥 = (𝑘 + 1) → (!‘𝑥) = (!‘(𝑘 + 1)))
1211breq2d 4094 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘(𝑘 + 1))))
13 breq2 4086 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑃𝑥𝑃 ≤ (𝑘 + 1)))
1412, 13imbi12d 234 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1))))
1514imbi2d 230 . . 3 (𝑥 = (𝑘 + 1) → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))))
16 fveq2 5623 . . . . . 6 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
1716breq2d 4094 . . . . 5 (𝑥 = 𝑁 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘𝑁)))
18 breq2 4086 . . . . 5 (𝑥 = 𝑁 → (𝑃𝑥𝑃𝑁))
1917, 18imbi12d 234 . . . 4 (𝑥 = 𝑁 → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘𝑁) → 𝑃𝑁)))
2019imbi2d 230 . . 3 (𝑥 = 𝑁 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑁) → 𝑃𝑁))))
21 fac0 10937 . . . . 5 (!‘0) = 1
2221breq2i 4090 . . . 4 (𝑃 ∥ (!‘0) ↔ 𝑃 ∥ 1)
23 nprmdvds1 12648 . . . . 5 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
2423pm2.21d 622 . . . 4 (𝑃 ∈ ℙ → (𝑃 ∥ 1 → 𝑃 ≤ 0))
2522, 24biimtrid 152 . . 3 (𝑃 ∈ ℙ → (𝑃 ∥ (!‘0) → 𝑃 ≤ 0))
26 facp1 10939 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
2726adantr 276 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
2827breq2d 4094 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘(𝑘 + 1)) ↔ 𝑃 ∥ ((!‘𝑘) · (𝑘 + 1))))
29 simpr 110 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
30 faccl 10944 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
3130adantr 276 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (!‘𝑘) ∈ ℕ)
3231nnzd 9556 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (!‘𝑘) ∈ ℤ)
33 nn0p1nn 9396 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3433adantr 276 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑘 + 1) ∈ ℕ)
3534nnzd 9556 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑘 + 1) ∈ ℤ)
36 euclemma 12654 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (!‘𝑘) ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑃 ∥ ((!‘𝑘) · (𝑘 + 1)) ↔ (𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1))))
3729, 32, 35, 36syl3anc 1271 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ ((!‘𝑘) · (𝑘 + 1)) ↔ (𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1))))
3828, 37bitrd 188 . . . . . . 7 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘(𝑘 + 1)) ↔ (𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1))))
39 nn0re 9366 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
4039adantr 276 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑘 ∈ ℝ)
4140lep1d 9066 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑘 ≤ (𝑘 + 1))
42 prmz 12619 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
4342adantl 277 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑃 ∈ ℤ)
4443zred 9557 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑃 ∈ ℝ)
4534nnred 9111 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑘 + 1) ∈ ℝ)
46 letr 8217 . . . . . . . . . . . 12 ((𝑃 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((𝑃𝑘𝑘 ≤ (𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))
4744, 40, 45, 46syl3anc 1271 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃𝑘𝑘 ≤ (𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))
4841, 47mpan2d 428 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃𝑘𝑃 ≤ (𝑘 + 1)))
4948imim2d 54 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → (𝑃 ∥ (!‘𝑘) → 𝑃 ≤ (𝑘 + 1))))
5049com23 78 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘𝑘) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
51 dvdsle 12341 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (𝑘 + 1) ∈ ℕ) → (𝑃 ∥ (𝑘 + 1) → 𝑃 ≤ (𝑘 + 1)))
5243, 34, 51syl2anc 411 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (𝑘 + 1) → 𝑃 ≤ (𝑘 + 1)))
5352a1dd 48 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (𝑘 + 1) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
5450, 53jaod 722 . . . . . . 7 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1)) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
5538, 54sylbid 150 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘(𝑘 + 1)) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
5655com23 78 . . . . 5 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1))))
5756ex 115 . . . 4 (𝑘 ∈ ℕ0 → (𝑃 ∈ ℙ → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))))
5857a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑘) → 𝑃𝑘)) → (𝑃 ∈ ℙ → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))))
595, 10, 15, 20, 25, 58nn0ind 9549 . 2 (𝑁 ∈ ℕ0 → (𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑁) → 𝑃𝑁)))
60593imp 1217 1 ((𝑁 ∈ ℕ0𝑃 ∈ ℙ ∧ 𝑃 ∥ (!‘𝑁)) → 𝑃𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4082  cfv 5314  (class class class)co 5994  cr 7986  0cc0 7987  1c1 7988   + caddc 7990   · cmul 7992  cle 8170  cn 9098  0cn0 9357  cz 9434  !cfa 10934  cdvds 12284  cprime 12615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-2o 6553  df-er 6670  df-en 6878  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-fac 10935  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-gcd 12461  df-prm 12616
This theorem is referenced by:  prmndvdsfaclt  12664
  Copyright terms: Public domain W3C validator