ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmfac1 GIF version

Theorem prmfac1 12347
Description: The factorial of a number only contains primes less than the base. (Contributed by Mario Carneiro, 6-Mar-2014.)
Assertion
Ref Expression
prmfac1 ((𝑁 ∈ ℕ0𝑃 ∈ ℙ ∧ 𝑃 ∥ (!‘𝑁)) → 𝑃𝑁)

Proof of Theorem prmfac1
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5561 . . . . . 6 (𝑥 = 0 → (!‘𝑥) = (!‘0))
21breq2d 4046 . . . . 5 (𝑥 = 0 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘0)))
3 breq2 4038 . . . . 5 (𝑥 = 0 → (𝑃𝑥𝑃 ≤ 0))
42, 3imbi12d 234 . . . 4 (𝑥 = 0 → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘0) → 𝑃 ≤ 0)))
54imbi2d 230 . . 3 (𝑥 = 0 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘0) → 𝑃 ≤ 0))))
6 fveq2 5561 . . . . . 6 (𝑥 = 𝑘 → (!‘𝑥) = (!‘𝑘))
76breq2d 4046 . . . . 5 (𝑥 = 𝑘 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘𝑘)))
8 breq2 4038 . . . . 5 (𝑥 = 𝑘 → (𝑃𝑥𝑃𝑘))
97, 8imbi12d 234 . . . 4 (𝑥 = 𝑘 → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘𝑘) → 𝑃𝑘)))
109imbi2d 230 . . 3 (𝑥 = 𝑘 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑘) → 𝑃𝑘))))
11 fveq2 5561 . . . . . 6 (𝑥 = (𝑘 + 1) → (!‘𝑥) = (!‘(𝑘 + 1)))
1211breq2d 4046 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘(𝑘 + 1))))
13 breq2 4038 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑃𝑥𝑃 ≤ (𝑘 + 1)))
1412, 13imbi12d 234 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1))))
1514imbi2d 230 . . 3 (𝑥 = (𝑘 + 1) → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))))
16 fveq2 5561 . . . . . 6 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
1716breq2d 4046 . . . . 5 (𝑥 = 𝑁 → (𝑃 ∥ (!‘𝑥) ↔ 𝑃 ∥ (!‘𝑁)))
18 breq2 4038 . . . . 5 (𝑥 = 𝑁 → (𝑃𝑥𝑃𝑁))
1917, 18imbi12d 234 . . . 4 (𝑥 = 𝑁 → ((𝑃 ∥ (!‘𝑥) → 𝑃𝑥) ↔ (𝑃 ∥ (!‘𝑁) → 𝑃𝑁)))
2019imbi2d 230 . . 3 (𝑥 = 𝑁 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑥) → 𝑃𝑥)) ↔ (𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑁) → 𝑃𝑁))))
21 fac0 10839 . . . . 5 (!‘0) = 1
2221breq2i 4042 . . . 4 (𝑃 ∥ (!‘0) ↔ 𝑃 ∥ 1)
23 nprmdvds1 12335 . . . . 5 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
2423pm2.21d 620 . . . 4 (𝑃 ∈ ℙ → (𝑃 ∥ 1 → 𝑃 ≤ 0))
2522, 24biimtrid 152 . . 3 (𝑃 ∈ ℙ → (𝑃 ∥ (!‘0) → 𝑃 ≤ 0))
26 facp1 10841 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
2726adantr 276 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
2827breq2d 4046 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘(𝑘 + 1)) ↔ 𝑃 ∥ ((!‘𝑘) · (𝑘 + 1))))
29 simpr 110 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
30 faccl 10846 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
3130adantr 276 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (!‘𝑘) ∈ ℕ)
3231nnzd 9466 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (!‘𝑘) ∈ ℤ)
33 nn0p1nn 9307 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3433adantr 276 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑘 + 1) ∈ ℕ)
3534nnzd 9466 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑘 + 1) ∈ ℤ)
36 euclemma 12341 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (!‘𝑘) ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑃 ∥ ((!‘𝑘) · (𝑘 + 1)) ↔ (𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1))))
3729, 32, 35, 36syl3anc 1249 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ ((!‘𝑘) · (𝑘 + 1)) ↔ (𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1))))
3828, 37bitrd 188 . . . . . . 7 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘(𝑘 + 1)) ↔ (𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1))))
39 nn0re 9277 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
4039adantr 276 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑘 ∈ ℝ)
4140lep1d 8977 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑘 ≤ (𝑘 + 1))
42 prmz 12306 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
4342adantl 277 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑃 ∈ ℤ)
4443zred 9467 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → 𝑃 ∈ ℝ)
4534nnred 9022 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑘 + 1) ∈ ℝ)
46 letr 8128 . . . . . . . . . . . 12 ((𝑃 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((𝑃𝑘𝑘 ≤ (𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))
4744, 40, 45, 46syl3anc 1249 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃𝑘𝑘 ≤ (𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))
4841, 47mpan2d 428 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃𝑘𝑃 ≤ (𝑘 + 1)))
4948imim2d 54 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → (𝑃 ∥ (!‘𝑘) → 𝑃 ≤ (𝑘 + 1))))
5049com23 78 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘𝑘) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
51 dvdsle 12028 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (𝑘 + 1) ∈ ℕ) → (𝑃 ∥ (𝑘 + 1) → 𝑃 ≤ (𝑘 + 1)))
5243, 34, 51syl2anc 411 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (𝑘 + 1) → 𝑃 ≤ (𝑘 + 1)))
5352a1dd 48 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (𝑘 + 1) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
5450, 53jaod 718 . . . . . . 7 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃 ∥ (!‘𝑘) ∨ 𝑃 ∥ (𝑘 + 1)) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
5538, 54sylbid 150 . . . . . 6 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 ∥ (!‘(𝑘 + 1)) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → 𝑃 ≤ (𝑘 + 1))))
5655com23 78 . . . . 5 ((𝑘 ∈ ℕ0𝑃 ∈ ℙ) → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1))))
5756ex 115 . . . 4 (𝑘 ∈ ℕ0 → (𝑃 ∈ ℙ → ((𝑃 ∥ (!‘𝑘) → 𝑃𝑘) → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))))
5857a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑘) → 𝑃𝑘)) → (𝑃 ∈ ℙ → (𝑃 ∥ (!‘(𝑘 + 1)) → 𝑃 ≤ (𝑘 + 1)))))
595, 10, 15, 20, 25, 58nn0ind 9459 . 2 (𝑁 ∈ ℕ0 → (𝑃 ∈ ℙ → (𝑃 ∥ (!‘𝑁) → 𝑃𝑁)))
60593imp 1195 1 ((𝑁 ∈ ℕ0𝑃 ∈ ℙ ∧ 𝑃 ∥ (!‘𝑁)) → 𝑃𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5925  cr 7897  0cc0 7898  1c1 7899   + caddc 7901   · cmul 7903  cle 8081  cn 9009  0cn0 9268  cz 9345  !cfa 10836  cdvds 11971  cprime 12302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-prm 12303
This theorem is referenced by:  prmndvdsfaclt  12351
  Copyright terms: Public domain W3C validator