| Step | Hyp | Ref
 | Expression | 
| 1 |   | caucvgsr.cau | 
. 2
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )))) | 
| 2 |   | caucvgsr.f | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:N⟶R) | 
| 3 |   | caucvgsrlembnd.bnd | 
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | 
| 4 |   | caucvgsrlembnd.offset | 
. . . . . . . . . . . 12
⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R
1R) +R (𝐴 ·R
-1R))) | 
| 5 | 2, 1, 3, 4 | caucvgsrlemoffval 7863 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ N) → ((𝐺‘𝑛) +R 𝐴) = ((𝐹‘𝑛) +R
1R)) | 
| 6 | 5 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐺‘𝑛) +R
𝐴) = ((𝐹‘𝑛) +R
1R)) | 
| 7 | 6 | eqcomd 2202 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐹‘𝑛) +R
1R) = ((𝐺‘𝑛) +R 𝐴)) | 
| 8 | 2 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
𝐹:N⟶R) | 
| 9 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
𝑘 ∈
N) | 
| 10 | 8, 9 | ffvelcdmd 5698 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(𝐹‘𝑘) ∈ R) | 
| 11 |   | simplr 528 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
𝑛 ∈
N) | 
| 12 |   | recnnpr 7615 | 
. . . . . . . . . . . 12
⊢ (𝑛 ∈ N →
〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 ∈
P) | 
| 13 |   | prsrcl 7851 | 
. . . . . . . . . . . 12
⊢
(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 ∈ P →
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) | 
| 14 | 11, 12, 13 | 3syl 17 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) | 
| 15 |   | 1sr 7818 | 
. . . . . . . . . . . 12
⊢
1R ∈ R | 
| 16 | 15 | a1i 9 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
1R ∈ R) | 
| 17 |   | addcomsrg 7822 | 
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R)
→ (𝑓
+R 𝑔) = (𝑔 +R 𝑓)) | 
| 18 | 17 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) ∧
(𝑓 ∈ R
∧ 𝑔 ∈
R)) → (𝑓
+R 𝑔) = (𝑔 +R 𝑓)) | 
| 19 |   | addasssrg 7823 | 
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → ((𝑓
+R 𝑔) +R ℎ) = (𝑓 +R (𝑔 +R
ℎ))) | 
| 20 | 19 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) ∧
(𝑓 ∈ R
∧ 𝑔 ∈
R ∧ ℎ
∈ R)) → ((𝑓 +R 𝑔) +R
ℎ) = (𝑓 +R (𝑔 +R
ℎ))) | 
| 21 | 10, 14, 16, 18, 20 | caov32d 6104 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R
1R) = (((𝐹‘𝑘) +R
1R) +R [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )) | 
| 22 | 2, 1, 3, 4 | caucvgsrlemoffval 7863 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ N) → ((𝐺‘𝑘) +R 𝐴) = ((𝐹‘𝑘) +R
1R)) | 
| 23 | 22 | adantlr 477 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐺‘𝑘) +R
𝐴) = ((𝐹‘𝑘) +R
1R)) | 
| 24 | 23 | oveq1d 5937 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(((𝐺‘𝑘) +R
𝐴)
+R [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) = (((𝐹‘𝑘) +R
1R) +R [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )) | 
| 25 | 2, 1, 3, 4 | caucvgsrlemofff 7864 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:N⟶R) | 
| 26 | 25 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
𝐺:N⟶R) | 
| 27 | 26, 9 | ffvelcdmd 5698 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(𝐺‘𝑘) ∈ R) | 
| 28 | 3 | caucvgsrlemasr 7857 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ R) | 
| 29 | 28 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
𝐴 ∈
R) | 
| 30 | 27, 29, 14, 18, 20 | caov32d 6104 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(((𝐺‘𝑘) +R
𝐴)
+R [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) = (((𝐺‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R 𝐴)) | 
| 31 | 21, 24, 30 | 3eqtr2d 2235 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R
1R) = (((𝐺‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R 𝐴)) | 
| 32 | 7, 31 | breq12d 4046 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(((𝐹‘𝑛) +R
1R) <R (((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R
1R) ↔ ((𝐺‘𝑛) +R 𝐴) <R
(((𝐺‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R 𝐴))) | 
| 33 |   | ltasrg 7837 | 
. . . . . . . . . 10
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → (𝑓
<R 𝑔 ↔ (ℎ +R 𝑓) <R
(ℎ
+R 𝑔))) | 
| 34 | 33 | adantl 277 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) ∧
(𝑓 ∈ R
∧ 𝑔 ∈
R ∧ ℎ
∈ R)) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R
(ℎ
+R 𝑔))) | 
| 35 | 8, 11 | ffvelcdmd 5698 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(𝐹‘𝑛) ∈ R) | 
| 36 |   | addclsr 7820 | 
. . . . . . . . . 10
⊢ (((𝐹‘𝑘) ∈ R ∧
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) → ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∈ R) | 
| 37 | 10, 14, 36 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∈ R) | 
| 38 | 34, 35, 37, 16, 18 | caovord2d 6093 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐹‘𝑛) <R
((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ↔ ((𝐹‘𝑛) +R
1R) <R (((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R
1R))) | 
| 39 | 26, 11 | ffvelcdmd 5698 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(𝐺‘𝑛) ∈ R) | 
| 40 |   | addclsr 7820 | 
. . . . . . . . . 10
⊢ (((𝐺‘𝑘) ∈ R ∧
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) → ((𝐺‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∈ R) | 
| 41 | 27, 14, 40 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐺‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∈ R) | 
| 42 | 34, 39, 41, 29, 18 | caovord2d 6093 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐺‘𝑛) <R
((𝐺‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ↔ ((𝐺‘𝑛) +R 𝐴) <R
(((𝐺‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R 𝐴))) | 
| 43 | 32, 38, 42 | 3bitr4d 220 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐹‘𝑛) <R
((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ↔ (𝐺‘𝑛) <R ((𝐺‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))) | 
| 44 | 23 | eqcomd 2202 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐹‘𝑘) +R
1R) = ((𝐺‘𝑘) +R 𝐴)) | 
| 45 | 35, 14, 16, 18, 20 | caov32d 6104 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R
1R) = (((𝐹‘𝑛) +R
1R) +R [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )) | 
| 46 | 6 | oveq1d 5937 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(((𝐺‘𝑛) +R
𝐴)
+R [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) = (((𝐹‘𝑛) +R
1R) +R [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )) | 
| 47 | 39, 29, 14, 18, 20 | caov32d 6104 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(((𝐺‘𝑛) +R
𝐴)
+R [〈(〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) = (((𝐺‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R 𝐴)) | 
| 48 | 45, 46, 47 | 3eqtr2d 2235 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R
1R) = (((𝐺‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R 𝐴)) | 
| 49 | 44, 48 | breq12d 4046 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(((𝐹‘𝑘) +R
1R) <R (((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R
1R) ↔ ((𝐺‘𝑘) +R 𝐴) <R
(((𝐺‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R 𝐴))) | 
| 50 |   | addclsr 7820 | 
. . . . . . . . . 10
⊢ (((𝐹‘𝑛) ∈ R ∧
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) → ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∈ R) | 
| 51 | 35, 14, 50 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∈ R) | 
| 52 | 34, 10, 51, 16, 18 | caovord2d 6093 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐹‘𝑘) <R
((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ↔ ((𝐹‘𝑘) +R
1R) <R (((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R
1R))) | 
| 53 |   | addclsr 7820 | 
. . . . . . . . . 10
⊢ (((𝐺‘𝑛) ∈ R ∧
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ∈ R) → ((𝐺‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∈ R) | 
| 54 | 39, 14, 53 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐺‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∈ R) | 
| 55 | 34, 27, 54, 29, 18 | caovord2d 6093 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐺‘𝑘) <R
((𝐺‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ↔ ((𝐺‘𝑘) +R 𝐴) <R
(((𝐺‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) +R 𝐴))) | 
| 56 | 49, 52, 55 | 3bitr4d 220 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝐹‘𝑘) <R
((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ↔ (𝐺‘𝑘) <R ((𝐺‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))) | 
| 57 | 43, 56 | anbi12d 473 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(((𝐹‘𝑛) <R
((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )) ↔ ((𝐺‘𝑛) <R ((𝐺‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐺‘𝑘) <R ((𝐺‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )))) | 
| 58 | 57 | biimpd 144 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
(((𝐹‘𝑛) <R
((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )) → ((𝐺‘𝑛) <R ((𝐺‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐺‘𝑘) <R ((𝐺‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )))) | 
| 59 | 58 | imim2d 54 | 
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ N) ∧ 𝑘 ∈ N) →
((𝑛
<N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))) → (𝑛 <N 𝑘 → ((𝐺‘𝑛) <R ((𝐺‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐺‘𝑘) <R ((𝐺‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))))) | 
| 60 | 59 | ralimdva 2564 | 
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ N) →
(∀𝑘 ∈
N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))) → ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐺‘𝑛) <R ((𝐺‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐺‘𝑘) <R ((𝐺‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))))) | 
| 61 | 60 | ralimdva 2564 | 
. 2
⊢ (𝜑 → (∀𝑛 ∈ N
∀𝑘 ∈
N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))) → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐺‘𝑛) <R ((𝐺‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐺‘𝑘) <R ((𝐺‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ))))) | 
| 62 | 1, 61 | mpd 13 | 
1
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐺‘𝑛) <R ((𝐺‘𝑘) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R ) ∧ (𝐺‘𝑘) <R ((𝐺‘𝑛) +R
[〈(〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉 +P
1P), 1P〉]
~R )))) |