ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemaz GIF version

Theorem bezoutlemaz 11994
Description: Lemma for Bézout's identity. Like bezoutlemzz 11993 but where ' A ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemaz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦   𝐵,𝑑,𝑥,𝑦   𝑧,𝐴,𝑑   𝑧,𝐵

Proof of Theorem bezoutlemaz
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 bezoutlemzz 11993 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
21ancoms 268 . . 3 ((𝐵 ∈ ℕ0𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
32adantll 476 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
4 bezoutlemzz 11993 . . . . 5 ((-𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
54ancoms 268 . . . 4 ((𝐵 ∈ ℕ0 ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
65adantll 476 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
7 simpr 110 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
8 simpll 527 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
98ad2antrr 488 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝐴 ∈ ℤ)
10 dvdsnegb 11806 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑧𝐴𝑧 ∥ -𝐴))
117, 9, 10syl2anc 411 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ∥ -𝐴))
1211biimprd 158 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ -𝐴𝑧𝐴))
1312anim1d 336 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧 ∥ -𝐴𝑧𝐵) → (𝑧𝐴𝑧𝐵)))
1413imim2d 54 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
1514ralimdva 2544 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
168ad2antrr 488 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐴 ∈ ℤ)
1716zcnd 9370 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐴 ∈ ℂ)
18 simpr 110 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈ ℤ)
1918zcnd 9370 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈ ℂ)
20 mulneg12 8348 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (-𝐴 · 𝑡) = (𝐴 · -𝑡))
2117, 19, 20syl2anc 411 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (-𝐴 · 𝑡) = (𝐴 · -𝑡))
2221oveq1d 5885 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) = ((𝐴 · -𝑡) + (𝐵 · 𝑦)))
2322eqeq2d 2189 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
2423rexbidv 2478 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
25 znegcl 9278 . . . . . . . . . 10 (𝑡 ∈ ℤ → -𝑡 ∈ ℤ)
26 oveq2 5878 . . . . . . . . . . . . . 14 (𝑥 = -𝑡 → (𝐴 · 𝑥) = (𝐴 · -𝑡))
2726oveq1d 5885 . . . . . . . . . . . . 13 (𝑥 = -𝑡 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · -𝑡) + (𝐵 · 𝑦)))
2827eqeq2d 2189 . . . . . . . . . . . 12 (𝑥 = -𝑡 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
2928rexbidv 2478 . . . . . . . . . . 11 (𝑥 = -𝑡 → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
3029rspcev 2841 . . . . . . . . . 10 ((-𝑡 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
3125, 30sylan 283 . . . . . . . . 9 ((𝑡 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
3231ex 115 . . . . . . . 8 (𝑡 ∈ ℤ → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3332adantl 277 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3424, 33sylbid 150 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3534rexlimdva 2594 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3615, 35anim12d 335 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3736reximdva 2579 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
386, 37mpd 13 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
39 elznn0 9262 . . . 4 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℝ ∧ (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0)))
4039simprbi 275 . . 3 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0))
4140adantr 276 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0))
423, 38, 41mpjaodan 798 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  wral 2455  wrex 2456   class class class wbr 4001  (class class class)co 5870  cc 7804  cr 7805   + caddc 7809   · cmul 7811  -cneg 8123  0cn0 9170  cz 9247  cdvds 11785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4116  ax-sep 4119  ax-nul 4127  ax-pow 4172  ax-pr 4207  ax-un 4431  ax-setind 4534  ax-iinf 4585  ax-cnex 7897  ax-resscn 7898  ax-1cn 7899  ax-1re 7900  ax-icn 7901  ax-addcl 7902  ax-addrcl 7903  ax-mulcl 7904  ax-mulrcl 7905  ax-addcom 7906  ax-mulcom 7907  ax-addass 7908  ax-mulass 7909  ax-distr 7910  ax-i2m1 7911  ax-0lt1 7912  ax-1rid 7913  ax-0id 7914  ax-rnegex 7915  ax-precex 7916  ax-cnre 7917  ax-pre-ltirr 7918  ax-pre-ltwlin 7919  ax-pre-lttrn 7920  ax-pre-apti 7921  ax-pre-ltadd 7922  ax-pre-mulgt0 7923  ax-pre-mulext 7924  ax-arch 7925
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-int 3844  df-iun 3887  df-br 4002  df-opab 4063  df-mpt 4064  df-tr 4100  df-id 4291  df-po 4294  df-iso 4295  df-iord 4364  df-on 4366  df-ilim 4367  df-suc 4369  df-iom 4588  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-ima 4637  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-f1 5218  df-fo 5219  df-f1o 5220  df-fv 5221  df-riota 5826  df-ov 5873  df-oprab 5874  df-mpo 5875  df-1st 6136  df-2nd 6137  df-recs 6301  df-frec 6387  df-pnf 7988  df-mnf 7989  df-xr 7990  df-ltxr 7991  df-le 7992  df-sub 8124  df-neg 8125  df-reap 8526  df-ap 8533  df-div 8624  df-inn 8914  df-2 8972  df-n0 9171  df-z 9248  df-uz 9523  df-q 9614  df-rp 9648  df-fz 10003  df-fl 10263  df-mod 10316  df-seqfrec 10439  df-exp 10513  df-cj 10842  df-re 10843  df-im 10844  df-rsqrt 10998  df-abs 10999  df-dvds 11786
This theorem is referenced by:  bezoutlembz  11995
  Copyright terms: Public domain W3C validator