ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemaz GIF version

Theorem bezoutlemaz 11958
Description: Lemma for Bézout's identity. Like bezoutlemzz 11957 but where ' A ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemaz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦   𝐵,𝑑,𝑥,𝑦   𝑧,𝐴,𝑑   𝑧,𝐵

Proof of Theorem bezoutlemaz
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 bezoutlemzz 11957 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
21ancoms 266 . . 3 ((𝐵 ∈ ℕ0𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
32adantll 473 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
4 bezoutlemzz 11957 . . . . 5 ((-𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
54ancoms 266 . . . 4 ((𝐵 ∈ ℕ0 ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
65adantll 473 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
7 simpr 109 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
8 simpll 524 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
98ad2antrr 485 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝐴 ∈ ℤ)
10 dvdsnegb 11770 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑧𝐴𝑧 ∥ -𝐴))
117, 9, 10syl2anc 409 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ∥ -𝐴))
1211biimprd 157 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ -𝐴𝑧𝐴))
1312anim1d 334 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧 ∥ -𝐴𝑧𝐵) → (𝑧𝐴𝑧𝐵)))
1413imim2d 54 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
1514ralimdva 2537 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
168ad2antrr 485 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐴 ∈ ℤ)
1716zcnd 9335 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐴 ∈ ℂ)
18 simpr 109 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈ ℤ)
1918zcnd 9335 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈ ℂ)
20 mulneg12 8316 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (-𝐴 · 𝑡) = (𝐴 · -𝑡))
2117, 19, 20syl2anc 409 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (-𝐴 · 𝑡) = (𝐴 · -𝑡))
2221oveq1d 5868 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) = ((𝐴 · -𝑡) + (𝐵 · 𝑦)))
2322eqeq2d 2182 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
2423rexbidv 2471 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
25 znegcl 9243 . . . . . . . . . 10 (𝑡 ∈ ℤ → -𝑡 ∈ ℤ)
26 oveq2 5861 . . . . . . . . . . . . . 14 (𝑥 = -𝑡 → (𝐴 · 𝑥) = (𝐴 · -𝑡))
2726oveq1d 5868 . . . . . . . . . . . . 13 (𝑥 = -𝑡 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · -𝑡) + (𝐵 · 𝑦)))
2827eqeq2d 2182 . . . . . . . . . . . 12 (𝑥 = -𝑡 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
2928rexbidv 2471 . . . . . . . . . . 11 (𝑥 = -𝑡 → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
3029rspcev 2834 . . . . . . . . . 10 ((-𝑡 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
3125, 30sylan 281 . . . . . . . . 9 ((𝑡 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
3231ex 114 . . . . . . . 8 (𝑡 ∈ ℤ → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3332adantl 275 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3424, 33sylbid 149 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3534rexlimdva 2587 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3615, 35anim12d 333 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3736reximdva 2572 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
386, 37mpd 13 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
39 elznn0 9227 . . . 4 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℝ ∧ (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0)))
4039simprbi 273 . . 3 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0))
4140adantr 274 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0))
423, 38, 41mpjaodan 793 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  wral 2448  wrex 2449   class class class wbr 3989  (class class class)co 5853  cc 7772  cr 7773   + caddc 7777   · cmul 7779  -cneg 8091  0cn0 9135  cz 9212  cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750
This theorem is referenced by:  bezoutlembz  11959
  Copyright terms: Public domain W3C validator