ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemaz GIF version

Theorem bezoutlemaz 12140
Description: Lemma for Bézout's identity. Like bezoutlemzz 12139 but where ' A ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemaz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦   𝐵,𝑑,𝑥,𝑦   𝑧,𝐴,𝑑   𝑧,𝐵

Proof of Theorem bezoutlemaz
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 bezoutlemzz 12139 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
21ancoms 268 . . 3 ((𝐵 ∈ ℕ0𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
32adantll 476 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
4 bezoutlemzz 12139 . . . . 5 ((-𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
54ancoms 268 . . . 4 ((𝐵 ∈ ℕ0 ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
65adantll 476 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
7 simpr 110 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
8 simpll 527 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
98ad2antrr 488 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝐴 ∈ ℤ)
10 dvdsnegb 11951 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑧𝐴𝑧 ∥ -𝐴))
117, 9, 10syl2anc 411 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ∥ -𝐴))
1211biimprd 158 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ -𝐴𝑧𝐴))
1312anim1d 336 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧 ∥ -𝐴𝑧𝐵) → (𝑧𝐴𝑧𝐵)))
1413imim2d 54 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
1514ralimdva 2561 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
168ad2antrr 488 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐴 ∈ ℤ)
1716zcnd 9440 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐴 ∈ ℂ)
18 simpr 110 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈ ℤ)
1918zcnd 9440 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈ ℂ)
20 mulneg12 8416 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (-𝐴 · 𝑡) = (𝐴 · -𝑡))
2117, 19, 20syl2anc 411 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (-𝐴 · 𝑡) = (𝐴 · -𝑡))
2221oveq1d 5933 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) = ((𝐴 · -𝑡) + (𝐵 · 𝑦)))
2322eqeq2d 2205 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
2423rexbidv 2495 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
25 znegcl 9348 . . . . . . . . . 10 (𝑡 ∈ ℤ → -𝑡 ∈ ℤ)
26 oveq2 5926 . . . . . . . . . . . . . 14 (𝑥 = -𝑡 → (𝐴 · 𝑥) = (𝐴 · -𝑡))
2726oveq1d 5933 . . . . . . . . . . . . 13 (𝑥 = -𝑡 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · -𝑡) + (𝐵 · 𝑦)))
2827eqeq2d 2205 . . . . . . . . . . . 12 (𝑥 = -𝑡 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
2928rexbidv 2495 . . . . . . . . . . 11 (𝑥 = -𝑡 → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
3029rspcev 2864 . . . . . . . . . 10 ((-𝑡 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
3125, 30sylan 283 . . . . . . . . 9 ((𝑡 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
3231ex 115 . . . . . . . 8 (𝑡 ∈ ℤ → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3332adantl 277 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3424, 33sylbid 150 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3534rexlimdva 2611 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3615, 35anim12d 335 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3736reximdva 2596 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
386, 37mpd 13 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
39 elznn0 9332 . . . 4 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℝ ∧ (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0)))
4039simprbi 275 . . 3 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0))
4140adantr 276 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0))
423, 38, 41mpjaodan 799 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2164  wral 2472  wrex 2473   class class class wbr 4029  (class class class)co 5918  cc 7870  cr 7871   + caddc 7875   · cmul 7877  -cneg 8191  0cn0 9240  cz 9317  cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931
This theorem is referenced by:  bezoutlembz  12141
  Copyright terms: Public domain W3C validator