Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemaz GIF version

Theorem bezoutlemaz 11761
 Description: Lemma for Bézout's identity. Like bezoutlemzz 11760 but where ' A ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlemaz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦   𝐵,𝑑,𝑥,𝑦   𝑧,𝐴,𝑑   𝑧,𝐵

Proof of Theorem bezoutlemaz
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 bezoutlemzz 11760 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
21ancoms 266 . . 3 ((𝐵 ∈ ℕ0𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
32adantll 468 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ 𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
4 bezoutlemzz 11760 . . . . 5 ((-𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
54ancoms 266 . . . 4 ((𝐵 ∈ ℕ0 ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
65adantll 468 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))))
7 simpr 109 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
8 simpll 519 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
98ad2antrr 480 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝐴 ∈ ℤ)
10 dvdsnegb 11580 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑧𝐴𝑧 ∥ -𝐴))
117, 9, 10syl2anc 409 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ∥ -𝐴))
1211biimprd 157 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ -𝐴𝑧𝐴))
1312anim1d 334 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧 ∥ -𝐴𝑧𝐵) → (𝑧𝐴𝑧𝐵)))
1413imim2d 54 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
1514ralimdva 2503 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
168ad2antrr 480 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐴 ∈ ℤ)
1716zcnd 9225 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐴 ∈ ℂ)
18 simpr 109 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈ ℤ)
1918zcnd 9225 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈ ℂ)
20 mulneg12 8210 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (-𝐴 · 𝑡) = (𝐴 · -𝑡))
2117, 19, 20syl2anc 409 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (-𝐴 · 𝑡) = (𝐴 · -𝑡))
2221oveq1d 5800 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) = ((𝐴 · -𝑡) + (𝐵 · 𝑦)))
2322eqeq2d 2152 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
2423rexbidv 2440 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
25 znegcl 9136 . . . . . . . . . 10 (𝑡 ∈ ℤ → -𝑡 ∈ ℤ)
26 oveq2 5793 . . . . . . . . . . . . . 14 (𝑥 = -𝑡 → (𝐴 · 𝑥) = (𝐴 · -𝑡))
2726oveq1d 5800 . . . . . . . . . . . . 13 (𝑥 = -𝑡 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · -𝑡) + (𝐵 · 𝑦)))
2827eqeq2d 2152 . . . . . . . . . . . 12 (𝑥 = -𝑡 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
2928rexbidv 2440 . . . . . . . . . . 11 (𝑥 = -𝑡 → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))))
3029rspcev 2794 . . . . . . . . . 10 ((-𝑡 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
3125, 30sylan 281 . . . . . . . . 9 ((𝑡 ∈ ℤ ∧ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
3231ex 114 . . . . . . . 8 (𝑡 ∈ ℤ → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3332adantl 275 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · -𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3424, 33sylbid 149 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3534rexlimdva 2553 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3615, 35anim12d 333 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3736reximdva 2538 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧 ∥ -𝐴𝑧𝐵)) ∧ ∃𝑡 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((-𝐴 · 𝑡) + (𝐵 · 𝑦))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
386, 37mpd 13 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) ∧ -𝐴 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
39 elznn0 9120 . . . 4 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℝ ∧ (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0)))
4039simprbi 273 . . 3 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0))
4140adantr 274 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0 ∨ -𝐴 ∈ ℕ0))
423, 38, 41mpjaodan 788 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 698   = wceq 1332   ∈ wcel 1481  ∀wral 2417  ∃wrex 2418   class class class wbr 3938  (class class class)co 5785  ℂcc 7669  ℝcr 7670   + caddc 7674   · cmul 7676  -cneg 7985  ℕ0cn0 9028  ℤcz 9105   ∥ cdvds 11563 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4141  ax-un 4365  ax-setind 4462  ax-iinf 4512  ax-cnex 7762  ax-resscn 7763  ax-1cn 7764  ax-1re 7765  ax-icn 7766  ax-addcl 7767  ax-addrcl 7768  ax-mulcl 7769  ax-mulrcl 7770  ax-addcom 7771  ax-mulcom 7772  ax-addass 7773  ax-mulass 7774  ax-distr 7775  ax-i2m1 7776  ax-0lt1 7777  ax-1rid 7778  ax-0id 7779  ax-rnegex 7780  ax-precex 7781  ax-cnre 7782  ax-pre-ltirr 7783  ax-pre-ltwlin 7784  ax-pre-lttrn 7785  ax-pre-apti 7786  ax-pre-ltadd 7787  ax-pre-mulgt0 7788  ax-pre-mulext 7789  ax-arch 7790 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4225  df-po 4228  df-iso 4229  df-iord 4298  df-on 4300  df-ilim 4301  df-suc 4303  df-iom 4515  df-xp 4556  df-rel 4557  df-cnv 4558  df-co 4559  df-dm 4560  df-rn 4561  df-res 4562  df-ima 4563  df-iota 5099  df-fun 5136  df-fn 5137  df-f 5138  df-f1 5139  df-fo 5140  df-f1o 5141  df-fv 5142  df-riota 5741  df-ov 5788  df-oprab 5789  df-mpo 5790  df-1st 6049  df-2nd 6050  df-recs 6213  df-frec 6299  df-pnf 7853  df-mnf 7854  df-xr 7855  df-ltxr 7856  df-le 7857  df-sub 7986  df-neg 7987  df-reap 8388  df-ap 8395  df-div 8484  df-inn 8772  df-2 8830  df-n0 9029  df-z 9106  df-uz 9378  df-q 9466  df-rp 9498  df-fz 9849  df-fl 10101  df-mod 10154  df-seqfrec 10277  df-exp 10351  df-cj 10673  df-re 10674  df-im 10675  df-rsqrt 10829  df-abs 10830  df-dvds 11564 This theorem is referenced by:  bezoutlembz  11762
 Copyright terms: Public domain W3C validator