ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembz GIF version

Theorem bezoutlembz 11086
Description: Lemma for Bézout's identity. Like bezoutlemaz 11085 but where ' B ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Distinct variable groups:   𝐴,𝑑,𝑥,𝑦   𝐵,𝑑,𝑥,𝑦   𝑧,𝐴,𝑑   𝑧,𝐵

Proof of Theorem bezoutlembz
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 bezoutlemaz 11085 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
21adantlr 461 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3 bezoutlemaz 11085 . . . 4 ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧 ∥ -𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡))))
43adantlr 461 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧 ∥ -𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡))))
5 simpr 108 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
6 simplr 497 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) → 𝐵 ∈ ℤ)
76ad2antrr 472 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝐵 ∈ ℤ)
8 dvdsnegb 10906 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑧𝐵𝑧 ∥ -𝐵))
95, 7, 8syl2anc 403 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧𝐵𝑧 ∥ -𝐵))
109biimprd 156 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ -𝐵𝑧𝐵))
1110anim2d 330 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧𝐴𝑧 ∥ -𝐵) → (𝑧𝐴𝑧𝐵)))
1211imim2d 53 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧𝑑 → (𝑧𝐴𝑧 ∥ -𝐵)) → (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
1312ralimdva 2441 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧 ∥ -𝐵)) → ∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵))))
146ad2antrr 472 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐵 ∈ ℤ)
1514zcnd 8839 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐵 ∈ ℂ)
16 simpr 108 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈ ℤ)
1716zcnd 8839 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈ ℂ)
18 mulneg12 7854 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (-𝐵 · 𝑡) = (𝐵 · -𝑡))
1915, 17, 18syl2anc 403 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (-𝐵 · 𝑡) = (𝐵 · -𝑡))
2019oveq2d 5650 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) = ((𝐴 · 𝑥) + (𝐵 · -𝑡)))
2120eqeq2d 2099 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) ↔ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡))))
22 znegcl 8751 . . . . . . . . . . 11 (𝑡 ∈ ℤ → -𝑡 ∈ ℤ)
23 oveq2 5642 . . . . . . . . . . . . . 14 (𝑦 = -𝑡 → (𝐵 · 𝑦) = (𝐵 · -𝑡))
2423oveq2d 5650 . . . . . . . . . . . . 13 (𝑦 = -𝑡 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · -𝑡)))
2524eqeq2d 2099 . . . . . . . . . . . 12 (𝑦 = -𝑡 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡))))
2625rspcev 2722 . . . . . . . . . . 11 ((-𝑡 ∈ ℤ ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡))) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
2722, 26sylan 277 . . . . . . . . . 10 ((𝑡 ∈ ℤ ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡))) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
2827ex 113 . . . . . . . . 9 (𝑡 ∈ ℤ → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡)) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2928adantl 271 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡)) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3021, 29sylbid 148 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3130rexlimdva 2489 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3231reximdv 2474 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → (∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3313, 32anim12d 328 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) ∧ 𝑑 ∈ ℕ0) → ((∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧 ∥ -𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡))) → (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
3433reximdva 2475 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) → (∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧 ∥ -𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))))
354, 34mpd 13 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
36 elznn0 8735 . . . 4 (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0)))
3736simprbi 269 . . 3 (𝐵 ∈ ℤ → (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0))
3837adantl 271 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ∈ ℕ0 ∨ -𝐵 ∈ ℕ0))
392, 35, 38mpjaodan 747 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧𝑑 → (𝑧𝐴𝑧𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 664   = wceq 1289  wcel 1438  wral 2359  wrex 2360   class class class wbr 3837  (class class class)co 5634  cc 7327  cr 7328   + caddc 7332   · cmul 7334  -cneg 7633  0cn0 8643  cz 8720  cdvds 10889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-fz 9394  df-fl 9642  df-mod 9695  df-iseq 9818  df-seq3 9819  df-exp 9920  df-cj 10241  df-re 10242  df-im 10243  df-rsqrt 10396  df-abs 10397  df-dvds 10890
This theorem is referenced by:  bezoutlembi  11087
  Copyright terms: Public domain W3C validator