| Step | Hyp | Ref
 | Expression | 
| 1 |   | bezoutlemaz 12170 | 
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0)
→ ∃𝑑 ∈
ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | 
| 2 | 1 | adantlr 477 | 
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐵 ∈ ℕ0)
→ ∃𝑑 ∈
ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | 
| 3 |   | bezoutlemaz 12170 | 
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ -𝐵 ∈ ℕ0)
→ ∃𝑑 ∈
ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ -𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡)))) | 
| 4 | 3 | adantlr 477 | 
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0)
→ ∃𝑑 ∈
ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ -𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡)))) | 
| 5 |   | simpr 110 | 
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝑧 ∈
ℤ) | 
| 6 |   | simplr 528 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0)
→ 𝐵 ∈
ℤ) | 
| 7 | 6 | ad2antrr 488 | 
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → 𝐵 ∈
ℤ) | 
| 8 |   | dvdsnegb 11973 | 
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑧 ∥ 𝐵 ↔ 𝑧 ∥ -𝐵)) | 
| 9 | 5, 7, 8 | syl2anc 411 | 
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ 𝐵 ↔ 𝑧 ∥ -𝐵)) | 
| 10 | 9 | biimprd 158 | 
. . . . . . . 8
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → (𝑧 ∥ -𝐵 → 𝑧 ∥ 𝐵)) | 
| 11 | 10 | anim2d 337 | 
. . . . . . 7
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ -𝐵) → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | 
| 12 | 11 | imim2d 54 | 
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℤ) → ((𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ -𝐵)) → (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) | 
| 13 | 12 | ralimdva 2564 | 
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0)
∧ 𝑑 ∈
ℕ0) → (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ -𝐵)) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) | 
| 14 | 6 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐵 ∈
ℤ) | 
| 15 | 14 | zcnd 9449 | 
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝐵 ∈
ℂ) | 
| 16 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈
ℤ) | 
| 17 | 16 | zcnd 9449 | 
. . . . . . . . . . 11
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → 𝑡 ∈
ℂ) | 
| 18 |   | mulneg12 8423 | 
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℂ ∧ 𝑡 ∈ ℂ) → (-𝐵 · 𝑡) = (𝐵 · -𝑡)) | 
| 19 | 15, 17, 18 | syl2anc 411 | 
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (-𝐵 · 𝑡) = (𝐵 · -𝑡)) | 
| 20 | 19 | oveq2d 5938 | 
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) = ((𝐴 · 𝑥) + (𝐵 · -𝑡))) | 
| 21 | 20 | eqeq2d 2208 | 
. . . . . . . 8
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) ↔ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡)))) | 
| 22 |   | znegcl 9357 | 
. . . . . . . . . . 11
⊢ (𝑡 ∈ ℤ → -𝑡 ∈
ℤ) | 
| 23 |   | oveq2 5930 | 
. . . . . . . . . . . . . 14
⊢ (𝑦 = -𝑡 → (𝐵 · 𝑦) = (𝐵 · -𝑡)) | 
| 24 | 23 | oveq2d 5938 | 
. . . . . . . . . . . . 13
⊢ (𝑦 = -𝑡 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · -𝑡))) | 
| 25 | 24 | eqeq2d 2208 | 
. . . . . . . . . . . 12
⊢ (𝑦 = -𝑡 → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡)))) | 
| 26 | 25 | rspcev 2868 | 
. . . . . . . . . . 11
⊢ ((-𝑡 ∈ ℤ ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡))) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) | 
| 27 | 22, 26 | sylan 283 | 
. . . . . . . . . 10
⊢ ((𝑡 ∈ ℤ ∧ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡))) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) | 
| 28 | 27 | ex 115 | 
. . . . . . . . 9
⊢ (𝑡 ∈ ℤ → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡)) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | 
| 29 | 28 | adantl 277 | 
. . . . . . . 8
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (𝑑 = ((𝐴 · 𝑥) + (𝐵 · -𝑡)) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | 
| 30 | 21, 29 | sylbid 150 | 
. . . . . . 7
⊢
(((((𝐴 ∈
ℤ ∧ 𝐵 ∈
ℤ) ∧ -𝐵 ∈
ℕ0) ∧ 𝑑 ∈ ℕ0) ∧ 𝑡 ∈ ℤ) → (𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | 
| 31 | 30 | rexlimdva 2614 | 
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0)
∧ 𝑑 ∈
ℕ0) → (∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) → ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | 
| 32 | 31 | reximdv 2598 | 
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0)
∧ 𝑑 ∈
ℕ0) → (∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | 
| 33 | 13, 32 | anim12d 335 | 
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0)
∧ 𝑑 ∈
ℕ0) → ((∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ -𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡))) → (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) | 
| 34 | 33 | reximdva 2599 | 
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0)
→ (∃𝑑 ∈
ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ -𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (-𝐵 · 𝑡))) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))) | 
| 35 | 4, 34 | mpd 13 | 
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ -𝐵 ∈ ℕ0)
→ ∃𝑑 ∈
ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | 
| 36 |   | elznn0 9341 | 
. . . 4
⊢ (𝐵 ∈ ℤ ↔ (𝐵 ∈ ℝ ∧ (𝐵 ∈ ℕ0 ∨
-𝐵 ∈
ℕ0))) | 
| 37 | 36 | simprbi 275 | 
. . 3
⊢ (𝐵 ∈ ℤ → (𝐵 ∈ ℕ0 ∨
-𝐵 ∈
ℕ0)) | 
| 38 | 37 | adantl 277 | 
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ∈ ℕ0 ∨
-𝐵 ∈
ℕ0)) | 
| 39 | 2, 35, 38 | mpjaodan 799 | 
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
∃𝑑 ∈
ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |