Proof of Theorem isores1
Step | Hyp | Ref
| Expression |
1 | | isocnv 5790 |
. . . . 5
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴)) |
2 | | isores2 5792 |
. . . . 5
⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) ↔ ◡𝐻 Isom 𝑆, (𝑅 ∩ (𝐴 × 𝐴))(𝐵, 𝐴)) |
3 | 1, 2 | sylib 121 |
. . . 4
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐻 Isom 𝑆, (𝑅 ∩ (𝐴 × 𝐴))(𝐵, 𝐴)) |
4 | | isocnv 5790 |
. . . 4
⊢ (◡𝐻 Isom 𝑆, (𝑅 ∩ (𝐴 × 𝐴))(𝐵, 𝐴) → ◡◡𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵)) |
5 | 3, 4 | syl 14 |
. . 3
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡◡𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵)) |
6 | | isof1o 5786 |
. . . 4
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
7 | | f1orel 5445 |
. . . 4
⊢ (𝐻:𝐴–1-1-onto→𝐵 → Rel 𝐻) |
8 | | dfrel2 5061 |
. . . . 5
⊢ (Rel
𝐻 ↔ ◡◡𝐻 = 𝐻) |
9 | | isoeq1 5780 |
. . . . 5
⊢ (◡◡𝐻 = 𝐻 → (◡◡𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))) |
10 | 8, 9 | sylbi 120 |
. . . 4
⊢ (Rel
𝐻 → (◡◡𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))) |
11 | 6, 7, 10 | 3syl 17 |
. . 3
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (◡◡𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))) |
12 | 5, 11 | mpbid 146 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵)) |
13 | | isocnv 5790 |
. . . . 5
⊢ (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → ◡𝐻 Isom 𝑆, (𝑅 ∩ (𝐴 × 𝐴))(𝐵, 𝐴)) |
14 | 13, 2 | sylibr 133 |
. . . 4
⊢ (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → ◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴)) |
15 | | isocnv 5790 |
. . . 4
⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → ◡◡𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
16 | 14, 15 | syl 14 |
. . 3
⊢ (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → ◡◡𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
17 | | isof1o 5786 |
. . . 4
⊢ (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
18 | | isoeq1 5780 |
. . . . 5
⊢ (◡◡𝐻 = 𝐻 → (◡◡𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))) |
19 | 8, 18 | sylbi 120 |
. . . 4
⊢ (Rel
𝐻 → (◡◡𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))) |
20 | 17, 7, 19 | 3syl 17 |
. . 3
⊢ (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → (◡◡𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))) |
21 | 16, 20 | mpbid 146 |
. 2
⊢ (𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
22 | 12, 21 | impbii 125 |
1
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵)) |