ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supisoex GIF version

Theorem supisoex 6846
Description: Lemma for supisoti 6847. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
supiso.2 (𝜑𝐶𝐴)
supisoex.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
Assertion
Ref Expression
supisoex (𝜑 → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑢,𝐶,𝑣,𝑤,𝑥,𝑦,𝑧   𝜑,𝑢,𝑤   𝑢,𝐹,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑅,𝑤,𝑥,𝑦,𝑧   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐵,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑣)   𝑅(𝑣)

Proof of Theorem supisoex
StepHypRef Expression
1 supisoex.3 . 2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
2 supiso.1 . . 3 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
3 supiso.2 . . 3 (𝜑𝐶𝐴)
4 simpl 108 . . . . . 6 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
5 simpr 109 . . . . . 6 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐶𝐴)
64, 5supisolem 6845 . . . . 5 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
7 isof1o 5660 . . . . . . . 8 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
8 f1of 5321 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
94, 7, 83syl 17 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐹:𝐴𝐵)
109ffvelrnda 5507 . . . . . 6 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
11 breq1 3896 . . . . . . . . . . 11 (𝑢 = (𝐹𝑥) → (𝑢𝑆𝑤 ↔ (𝐹𝑥)𝑆𝑤))
1211notbid 639 . . . . . . . . . 10 (𝑢 = (𝐹𝑥) → (¬ 𝑢𝑆𝑤 ↔ ¬ (𝐹𝑥)𝑆𝑤))
1312ralbidv 2409 . . . . . . . . 9 (𝑢 = (𝐹𝑥) → (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ↔ ∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤))
14 breq2 3897 . . . . . . . . . . 11 (𝑢 = (𝐹𝑥) → (𝑤𝑆𝑢𝑤𝑆(𝐹𝑥)))
1514imbi1d 230 . . . . . . . . . 10 (𝑢 = (𝐹𝑥) → ((𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣) ↔ (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1615ralbidv 2409 . . . . . . . . 9 (𝑢 = (𝐹𝑥) → (∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1713, 16anbi12d 462 . . . . . . . 8 (𝑢 = (𝐹𝑥) → ((∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
1817rspcev 2758 . . . . . . 7 (((𝐹𝑥) ∈ 𝐵 ∧ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1918ex 114 . . . . . 6 ((𝐹𝑥) ∈ 𝐵 → ((∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
2010, 19syl 14 . . . . 5 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
216, 20sylbid 149 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
2221rexlimdva 2521 . . 3 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → (∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
232, 3, 22syl2anc 406 . 2 (𝜑 → (∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
241, 23mpd 13 1 (𝜑 → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1312  wcel 1461  wral 2388  wrex 2389  wss 3035   class class class wbr 3893  cima 4500  wf 5075  1-1-ontowf1o 5078  cfv 5079   Isom wiso 5080
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-isom 5088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator