ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodmodclem2a GIF version

Theorem prodmodclem2a 11719
Description: Lemma for prodmodc 11721. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodmodc.3 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))
prodmodclem2.4 𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1))
prodmodclem2a.dc ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
prodmolem2.5 (𝜑𝑁 ∈ ℕ)
prodmolem2.6 (𝜑𝑀 ∈ ℤ)
prodmolem2.7 (𝜑𝐴 ⊆ (ℤ𝑀))
prodmolem2.8 (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)
prodmolem2.9 (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))
Assertion
Ref Expression
prodmodclem2a (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑁))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗   𝑘,𝐹   𝑗,𝐺   𝑗,𝐾,𝑘   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝑓,𝑗,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑓,𝑗)   𝐴(𝑓)   𝐵(𝑓,𝑘)   𝐹(𝑓,𝑗)   𝐺(𝑓,𝑘)   𝐻(𝑓,𝑗,𝑘)   𝐾(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem prodmodclem2a
Dummy variables 𝑝 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodmo.1 . . 3 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
2 prodmo.2 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3 prodmodclem2a.dc . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)
4 prodmolem2.7 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑀))
5 prodmolem2.9 . . . . . . 7 (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))
6 1zzd 9344 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
7 prodmolem2.5 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
87nnzd 9438 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
96, 8fzfigd 10502 . . . . . . . . . . 11 (𝜑 → (1...𝑁) ∈ Fin)
10 prodmolem2.8 . . . . . . . . . . 11 (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)
119, 10fihasheqf1od 10860 . . . . . . . . . 10 (𝜑 → (♯‘(1...𝑁)) = (♯‘𝐴))
127nnnn0d 9293 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
13 hashfz1 10854 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
1412, 13syl 14 . . . . . . . . . 10 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
1511, 14eqtr3d 2228 . . . . . . . . 9 (𝜑 → (♯‘𝐴) = 𝑁)
1615oveq2d 5934 . . . . . . . 8 (𝜑 → (1...(♯‘𝐴)) = (1...𝑁))
17 isoeq4 5847 . . . . . . . 8 ((1...(♯‘𝐴)) = (1...𝑁) → (𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴) ↔ 𝐾 Isom < , < ((1...𝑁), 𝐴)))
1816, 17syl 14 . . . . . . 7 (𝜑 → (𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴) ↔ 𝐾 Isom < , < ((1...𝑁), 𝐴)))
195, 18mpbid 147 . . . . . 6 (𝜑𝐾 Isom < , < ((1...𝑁), 𝐴))
20 isof1o 5850 . . . . . 6 (𝐾 Isom < , < ((1...𝑁), 𝐴) → 𝐾:(1...𝑁)–1-1-onto𝐴)
21 f1of 5500 . . . . . 6 (𝐾:(1...𝑁)–1-1-onto𝐴𝐾:(1...𝑁)⟶𝐴)
2219, 20, 213syl 17 . . . . 5 (𝜑𝐾:(1...𝑁)⟶𝐴)
23 nnuz 9628 . . . . . . 7 ℕ = (ℤ‘1)
247, 23eleqtrdi 2286 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘1))
25 eluzfz2 10098 . . . . . 6 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
2624, 25syl 14 . . . . 5 (𝜑𝑁 ∈ (1...𝑁))
2722, 26ffvelcdmd 5694 . . . 4 (𝜑 → (𝐾𝑁) ∈ 𝐴)
284, 27sseldd 3180 . . 3 (𝜑 → (𝐾𝑁) ∈ (ℤ𝑀))
294sselda 3179 . . . . . 6 ((𝜑𝑝𝐴) → 𝑝 ∈ (ℤ𝑀))
3019, 20syl 14 . . . . . . . . 9 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
31 f1ocnvfv2 5821 . . . . . . . . 9 ((𝐾:(1...𝑁)–1-1-onto𝐴𝑝𝐴) → (𝐾‘(𝐾𝑝)) = 𝑝)
3230, 31sylan 283 . . . . . . . 8 ((𝜑𝑝𝐴) → (𝐾‘(𝐾𝑝)) = 𝑝)
33 f1ocnv 5513 . . . . . . . . . . . 12 (𝐾:(1...𝑁)–1-1-onto𝐴𝐾:𝐴1-1-onto→(1...𝑁))
34 f1of 5500 . . . . . . . . . . . 12 (𝐾:𝐴1-1-onto→(1...𝑁) → 𝐾:𝐴⟶(1...𝑁))
3530, 33, 343syl 17 . . . . . . . . . . 11 (𝜑𝐾:𝐴⟶(1...𝑁))
3635ffvelcdmda 5693 . . . . . . . . . 10 ((𝜑𝑝𝐴) → (𝐾𝑝) ∈ (1...𝑁))
37 elfzle2 10094 . . . . . . . . . 10 ((𝐾𝑝) ∈ (1...𝑁) → (𝐾𝑝) ≤ 𝑁)
3836, 37syl 14 . . . . . . . . 9 ((𝜑𝑝𝐴) → (𝐾𝑝) ≤ 𝑁)
3919adantr 276 . . . . . . . . . 10 ((𝜑𝑝𝐴) → 𝐾 Isom < , < ((1...𝑁), 𝐴))
40 fzssuz 10131 . . . . . . . . . . . . 13 (1...𝑁) ⊆ (ℤ‘1)
41 uzssz 9612 . . . . . . . . . . . . . 14 (ℤ‘1) ⊆ ℤ
42 zssre 9324 . . . . . . . . . . . . . 14 ℤ ⊆ ℝ
4341, 42sstri 3188 . . . . . . . . . . . . 13 (ℤ‘1) ⊆ ℝ
4440, 43sstri 3188 . . . . . . . . . . . 12 (1...𝑁) ⊆ ℝ
45 ressxr 8063 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
4644, 45sstri 3188 . . . . . . . . . . 11 (1...𝑁) ⊆ ℝ*
4746a1i 9 . . . . . . . . . 10 ((𝜑𝑝𝐴) → (1...𝑁) ⊆ ℝ*)
48 uzssz 9612 . . . . . . . . . . . . . 14 (ℤ𝑀) ⊆ ℤ
4948, 42sstri 3188 . . . . . . . . . . . . 13 (ℤ𝑀) ⊆ ℝ
5049, 45sstri 3188 . . . . . . . . . . . 12 (ℤ𝑀) ⊆ ℝ*
514, 50sstrdi 3191 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ*)
5251adantr 276 . . . . . . . . . 10 ((𝜑𝑝𝐴) → 𝐴 ⊆ ℝ*)
5326adantr 276 . . . . . . . . . 10 ((𝜑𝑝𝐴) → 𝑁 ∈ (1...𝑁))
54 leisorel 10908 . . . . . . . . . 10 ((𝐾 Isom < , < ((1...𝑁), 𝐴) ∧ ((1...𝑁) ⊆ ℝ*𝐴 ⊆ ℝ*) ∧ ((𝐾𝑝) ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁))) → ((𝐾𝑝) ≤ 𝑁 ↔ (𝐾‘(𝐾𝑝)) ≤ (𝐾𝑁)))
5539, 47, 52, 36, 53, 54syl122anc 1258 . . . . . . . . 9 ((𝜑𝑝𝐴) → ((𝐾𝑝) ≤ 𝑁 ↔ (𝐾‘(𝐾𝑝)) ≤ (𝐾𝑁)))
5638, 55mpbid 147 . . . . . . . 8 ((𝜑𝑝𝐴) → (𝐾‘(𝐾𝑝)) ≤ (𝐾𝑁))
5732, 56eqbrtrrd 4053 . . . . . . 7 ((𝜑𝑝𝐴) → 𝑝 ≤ (𝐾𝑁))
584, 48sstrdi 3191 . . . . . . . . 9 (𝜑𝐴 ⊆ ℤ)
5958sselda 3179 . . . . . . . 8 ((𝜑𝑝𝐴) → 𝑝 ∈ ℤ)
6048, 28sselid 3177 . . . . . . . . 9 (𝜑 → (𝐾𝑁) ∈ ℤ)
6160adantr 276 . . . . . . . 8 ((𝜑𝑝𝐴) → (𝐾𝑁) ∈ ℤ)
62 eluz 9605 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ (𝐾𝑁) ∈ ℤ) → ((𝐾𝑁) ∈ (ℤ𝑝) ↔ 𝑝 ≤ (𝐾𝑁)))
6359, 61, 62syl2anc 411 . . . . . . 7 ((𝜑𝑝𝐴) → ((𝐾𝑁) ∈ (ℤ𝑝) ↔ 𝑝 ≤ (𝐾𝑁)))
6457, 63mpbird 167 . . . . . 6 ((𝜑𝑝𝐴) → (𝐾𝑁) ∈ (ℤ𝑝))
65 elfzuzb 10085 . . . . . 6 (𝑝 ∈ (𝑀...(𝐾𝑁)) ↔ (𝑝 ∈ (ℤ𝑀) ∧ (𝐾𝑁) ∈ (ℤ𝑝)))
6629, 64, 65sylanbrc 417 . . . . 5 ((𝜑𝑝𝐴) → 𝑝 ∈ (𝑀...(𝐾𝑁)))
6766ex 115 . . . 4 (𝜑 → (𝑝𝐴𝑝 ∈ (𝑀...(𝐾𝑁))))
6867ssrdv 3185 . . 3 (𝜑𝐴 ⊆ (𝑀...(𝐾𝑁)))
691, 2, 3, 28, 68fproddccvg 11715 . 2 (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq𝑀( · , 𝐹)‘(𝐾𝑁)))
70 mullid 8017 . . . . 5 (𝑚 ∈ ℂ → (1 · 𝑚) = 𝑚)
7170adantl 277 . . . 4 ((𝜑𝑚 ∈ ℂ) → (1 · 𝑚) = 𝑚)
72 mulrid 8016 . . . . 5 (𝑚 ∈ ℂ → (𝑚 · 1) = 𝑚)
7372adantl 277 . . . 4 ((𝜑𝑚 ∈ ℂ) → (𝑚 · 1) = 𝑚)
74 mulcl 7999 . . . . 5 ((𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑚 · 𝑥) ∈ ℂ)
7574adantl 277 . . . 4 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑚 · 𝑥) ∈ ℂ)
76 1cnd 8035 . . . 4 (𝜑 → 1 ∈ ℂ)
7726, 16eleqtrrd 2273 . . . 4 (𝜑𝑁 ∈ (1...(♯‘𝐴)))
78 eluzelz 9601 . . . . . 6 (𝑚 ∈ (ℤ𝑀) → 𝑚 ∈ ℤ)
79 simpr 110 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → 𝑚𝐴)
802ralrimiva 2567 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
8180ad2antrr 488 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → ∀𝑘𝐴 𝐵 ∈ ℂ)
82 nfcsb1v 3113 . . . . . . . . . 10 𝑘𝑚 / 𝑘𝐵
8382nfel1 2347 . . . . . . . . 9 𝑘𝑚 / 𝑘𝐵 ∈ ℂ
84 csbeq1a 3089 . . . . . . . . . 10 (𝑘 = 𝑚𝐵 = 𝑚 / 𝑘𝐵)
8584eleq1d 2262 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐵 ∈ ℂ ↔ 𝑚 / 𝑘𝐵 ∈ ℂ))
8683, 85rspc 2858 . . . . . . . 8 (𝑚𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑚 / 𝑘𝐵 ∈ ℂ))
8779, 81, 86sylc 62 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ 𝑚𝐴) → 𝑚 / 𝑘𝐵 ∈ ℂ)
88 1cnd 8035 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ𝑀)) ∧ ¬ 𝑚𝐴) → 1 ∈ ℂ)
89 eleq1 2256 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘𝐴𝑚𝐴))
9089dcbid 839 . . . . . . . 8 (𝑘 = 𝑚 → (DECID 𝑘𝐴DECID 𝑚𝐴))
913ralrimiva 2567 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝐴)
9291adantr 276 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → ∀𝑘 ∈ (ℤ𝑀)DECID 𝑘𝐴)
93 simpr 110 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑀)) → 𝑚 ∈ (ℤ𝑀))
9490, 92, 93rspcdva 2869 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑀)) → DECID 𝑚𝐴)
9587, 88, 94ifcldadc 3586 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑀)) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) ∈ ℂ)
96 nfcv 2336 . . . . . . 7 𝑘𝑚
97 nfv 1539 . . . . . . . 8 𝑘 𝑚𝐴
98 nfcv 2336 . . . . . . . 8 𝑘1
9997, 82, 98nfif 3585 . . . . . . 7 𝑘if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1)
10089, 84ifbieq1d 3579 . . . . . . 7 (𝑘 = 𝑚 → if(𝑘𝐴, 𝐵, 1) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
10196, 99, 100, 1fvmptf 5650 . . . . . 6 ((𝑚 ∈ ℤ ∧ if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) ∈ ℂ) → (𝐹𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
10278, 95, 101syl2an2 594 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝐹𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
103102, 95eqeltrd 2270 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑀)) → (𝐹𝑚) ∈ ℂ)
104 prodmodclem2.4 . . . . . 6 𝐻 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1))
105 breq1 4032 . . . . . . 7 (𝑗 = 𝑚 → (𝑗 ≤ (♯‘𝐴) ↔ 𝑚 ≤ (♯‘𝐴)))
106 fveq2 5554 . . . . . . . 8 (𝑗 = 𝑚 → (𝐾𝑗) = (𝐾𝑚))
107106csbeq1d 3087 . . . . . . 7 (𝑗 = 𝑚(𝐾𝑗) / 𝑘𝐵 = (𝐾𝑚) / 𝑘𝐵)
108105, 107ifbieq1d 3579 . . . . . 6 (𝑗 = 𝑚 → if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1) = if(𝑚 ≤ (♯‘𝐴), (𝐾𝑚) / 𝑘𝐵, 1))
109 elnnuz 9629 . . . . . . . 8 (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ‘1))
110109biimpri 133 . . . . . . 7 (𝑚 ∈ (ℤ‘1) → 𝑚 ∈ ℕ)
111110adantl 277 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘1)) → 𝑚 ∈ ℕ)
11222ad2antrr 488 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝐾:(1...𝑁)⟶𝐴)
113 1zzd 9344 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 1 ∈ ℤ)
1148ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝑁 ∈ ℤ)
115 eluzelz 9601 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ‘1) → 𝑚 ∈ ℤ)
116115ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝑚 ∈ ℤ)
117113, 114, 1163jca 1179 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → (1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ))
118 eluzle 9604 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ‘1) → 1 ≤ 𝑚)
119118ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 1 ≤ 𝑚)
120 simpr 110 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝑚 ≤ (♯‘𝐴))
12115ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → (♯‘𝐴) = 𝑁)
122120, 121breqtrd 4055 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝑚𝑁)
123119, 122jca 306 . . . . . . . . . 10 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → (1 ≤ 𝑚𝑚𝑁))
124 elfz2 10081 . . . . . . . . . 10 (𝑚 ∈ (1...𝑁) ↔ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ (1 ≤ 𝑚𝑚𝑁)))
125117, 123, 124sylanbrc 417 . . . . . . . . 9 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → 𝑚 ∈ (1...𝑁))
126112, 125ffvelcdmd 5694 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → (𝐾𝑚) ∈ 𝐴)
12780ad2antrr 488 . . . . . . . 8 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
128 nfcsb1v 3113 . . . . . . . . . 10 𝑘(𝐾𝑚) / 𝑘𝐵
129128nfel1 2347 . . . . . . . . 9 𝑘(𝐾𝑚) / 𝑘𝐵 ∈ ℂ
130 csbeq1a 3089 . . . . . . . . . 10 (𝑘 = (𝐾𝑚) → 𝐵 = (𝐾𝑚) / 𝑘𝐵)
131130eleq1d 2262 . . . . . . . . 9 (𝑘 = (𝐾𝑚) → (𝐵 ∈ ℂ ↔ (𝐾𝑚) / 𝑘𝐵 ∈ ℂ))
132129, 131rspc 2858 . . . . . . . 8 ((𝐾𝑚) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝐾𝑚) / 𝑘𝐵 ∈ ℂ))
133126, 127, 132sylc 62 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ 𝑚 ≤ (♯‘𝐴)) → (𝐾𝑚) / 𝑘𝐵 ∈ ℂ)
134 1cnd 8035 . . . . . . 7 (((𝜑𝑚 ∈ (ℤ‘1)) ∧ ¬ 𝑚 ≤ (♯‘𝐴)) → 1 ∈ ℂ)
135111nnzd 9438 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘1)) → 𝑚 ∈ ℤ)
13615, 8eqeltrd 2270 . . . . . . . . 9 (𝜑 → (♯‘𝐴) ∈ ℤ)
137136adantr 276 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘1)) → (♯‘𝐴) ∈ ℤ)
138 zdcle 9393 . . . . . . . 8 ((𝑚 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑚 ≤ (♯‘𝐴))
139135, 137, 138syl2anc 411 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘1)) → DECID 𝑚 ≤ (♯‘𝐴))
140133, 134, 139ifcldadc 3586 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘1)) → if(𝑚 ≤ (♯‘𝐴), (𝐾𝑚) / 𝑘𝐵, 1) ∈ ℂ)
141104, 108, 111, 140fvmptd3 5651 . . . . 5 ((𝜑𝑚 ∈ (ℤ‘1)) → (𝐻𝑚) = if(𝑚 ≤ (♯‘𝐴), (𝐾𝑚) / 𝑘𝐵, 1))
142141, 140eqeltrd 2270 . . . 4 ((𝜑𝑚 ∈ (ℤ‘1)) → (𝐻𝑚) ∈ ℂ)
143 eldifi 3281 . . . . . . 7 (𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → 𝑚 ∈ (𝑀...(𝐾‘(♯‘𝐴))))
144 elfzelz 10091 . . . . . . 7 (𝑚 ∈ (𝑀...(𝐾‘(♯‘𝐴))) → 𝑚 ∈ ℤ)
145143, 144syl 14 . . . . . 6 (𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → 𝑚 ∈ ℤ)
146 eldifn 3282 . . . . . . . . 9 (𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → ¬ 𝑚𝐴)
147146iffalsed 3567 . . . . . . . 8 (𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) = 1)
148 ax-1cn 7965 . . . . . . . 8 1 ∈ ℂ
149147, 148eqeltrdi 2284 . . . . . . 7 (𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) ∈ ℂ)
150149adantl 277 . . . . . 6 ((𝜑𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) ∈ ℂ)
151145, 150, 101syl2an2 594 . . . . 5 ((𝜑𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹𝑚) = if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1))
152147adantl 277 . . . . 5 ((𝜑𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴)) → if(𝑚𝐴, 𝑚 / 𝑘𝐵, 1) = 1)
153151, 152eqtrd 2226 . . . 4 ((𝜑𝑚 ∈ ((𝑀...(𝐾‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹𝑚) = 1)
154 elfzle2 10094 . . . . . . 7 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ≤ (♯‘𝐴))
155154adantl 277 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ≤ (♯‘𝐴))
156155iftrued 3564 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if(𝑥 ≤ (♯‘𝐴), (𝐾𝑥) / 𝑘𝐵, 1) = (𝐾𝑥) / 𝑘𝐵)
157 breq1 4032 . . . . . . 7 (𝑗 = 𝑥 → (𝑗 ≤ (♯‘𝐴) ↔ 𝑥 ≤ (♯‘𝐴)))
158 fveq2 5554 . . . . . . . 8 (𝑗 = 𝑥 → (𝐾𝑗) = (𝐾𝑥))
159158csbeq1d 3087 . . . . . . 7 (𝑗 = 𝑥(𝐾𝑗) / 𝑘𝐵 = (𝐾𝑥) / 𝑘𝐵)
160157, 159ifbieq1d 3579 . . . . . 6 (𝑗 = 𝑥 → if(𝑗 ≤ (♯‘𝐴), (𝐾𝑗) / 𝑘𝐵, 1) = if(𝑥 ≤ (♯‘𝐴), (𝐾𝑥) / 𝑘𝐵, 1))
161 elfznn 10120 . . . . . . 7 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ∈ ℕ)
162161adantl 277 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ∈ ℕ)
16322adantr 276 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝐾:(1...𝑁)⟶𝐴)
164 simpr 110 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ∈ (1...(♯‘𝐴)))
16515adantr 276 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (♯‘𝐴) = 𝑁)
166165oveq2d 5934 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (1...(♯‘𝐴)) = (1...𝑁))
167164, 166eleqtrd 2272 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ∈ (1...𝑁))
168163, 167ffvelcdmd 5694 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) ∈ 𝐴)
16980adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → ∀𝑘𝐴 𝐵 ∈ ℂ)
170 nfcsb1v 3113 . . . . . . . . . 10 𝑘(𝐾𝑥) / 𝑘𝐵
171170nfel1 2347 . . . . . . . . 9 𝑘(𝐾𝑥) / 𝑘𝐵 ∈ ℂ
172 csbeq1a 3089 . . . . . . . . . 10 (𝑘 = (𝐾𝑥) → 𝐵 = (𝐾𝑥) / 𝑘𝐵)
173172eleq1d 2262 . . . . . . . . 9 (𝑘 = (𝐾𝑥) → (𝐵 ∈ ℂ ↔ (𝐾𝑥) / 𝑘𝐵 ∈ ℂ))
174171, 173rspc 2858 . . . . . . . 8 ((𝐾𝑥) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝐾𝑥) / 𝑘𝐵 ∈ ℂ))
175168, 169, 174sylc 62 . . . . . . 7 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) / 𝑘𝐵 ∈ ℂ)
176156, 175eqeltrd 2270 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if(𝑥 ≤ (♯‘𝐴), (𝐾𝑥) / 𝑘𝐵, 1) ∈ ℂ)
177104, 160, 162, 176fvmptd3 5651 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐻𝑥) = if(𝑥 ≤ (♯‘𝐴), (𝐾𝑥) / 𝑘𝐵, 1))
1784adantr 276 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝐴 ⊆ (ℤ𝑀))
179178, 48sstrdi 3191 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → 𝐴 ⊆ ℤ)
180179, 168sseldd 3180 . . . . . . 7 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐾𝑥) ∈ ℤ)
181168iftrued 3564 . . . . . . . 8 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1) = (𝐾𝑥) / 𝑘𝐵)
182181, 175eqeltrd 2270 . . . . . . 7 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1) ∈ ℂ)
183 nfcv 2336 . . . . . . . 8 𝑘(𝐾𝑥)
184 nfv 1539 . . . . . . . . 9 𝑘(𝐾𝑥) ∈ 𝐴
185184, 170, 98nfif 3585 . . . . . . . 8 𝑘if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1)
186 eleq1 2256 . . . . . . . . 9 (𝑘 = (𝐾𝑥) → (𝑘𝐴 ↔ (𝐾𝑥) ∈ 𝐴))
187186, 172ifbieq1d 3579 . . . . . . . 8 (𝑘 = (𝐾𝑥) → if(𝑘𝐴, 𝐵, 1) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1))
188183, 185, 187, 1fvmptf 5650 . . . . . . 7 (((𝐾𝑥) ∈ ℤ ∧ if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1) ∈ ℂ) → (𝐹‘(𝐾𝑥)) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1))
189180, 182, 188syl2anc 411 . . . . . 6 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(𝐾𝑥)) = if((𝐾𝑥) ∈ 𝐴, (𝐾𝑥) / 𝑘𝐵, 1))
190189, 181eqtrd 2226 . . . . 5 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐹‘(𝐾𝑥)) = (𝐾𝑥) / 𝑘𝐵)
191156, 177, 1903eqtr4d 2236 . . . 4 ((𝜑𝑥 ∈ (1...(♯‘𝐴))) → (𝐻𝑥) = (𝐹‘(𝐾𝑥)))
19271, 73, 75, 76, 5, 77, 4, 103, 142, 153, 191seq3coll 10913 . . 3 (𝜑 → (seq𝑀( · , 𝐹)‘(𝐾𝑁)) = (seq1( · , 𝐻)‘𝑁))
193 prodmodc.3 . . . 4 𝐺 = (𝑗 ∈ ℕ ↦ if(𝑗 ≤ (♯‘𝐴), (𝑓𝑗) / 𝑘𝐵, 1))
1947, 7jca 306 . . . 4 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ))
1951, 2, 193, 104, 194, 10, 30prodmodclem3 11718 . . 3 (𝜑 → (seq1( · , 𝐺)‘𝑁) = (seq1( · , 𝐻)‘𝑁))
196192, 195eqtr4d 2229 . 2 (𝜑 → (seq𝑀( · , 𝐹)‘(𝐾𝑁)) = (seq1( · , 𝐺)‘𝑁))
19769, 196breqtrd 4055 1 (𝜑 → seq𝑀( · , 𝐹) ⇝ (seq1( · , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  wral 2472  csb 3080  cdif 3150  wss 3153  ifcif 3557   class class class wbr 4029  cmpt 4090  ccnv 4658  wf 5250  1-1-ontowf1o 5253  cfv 5254   Isom wiso 5255  (class class class)co 5918  cc 7870  cr 7871  1c1 7873   · cmul 7877  *cxr 8053   < clt 8054  cle 8055  cn 8982  0cn0 9240  cz 9317  cuz 9592  ...cfz 10074  seqcseq 10518  chash 10846  cli 11421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-rsqrt 11142  df-abs 11143  df-clim 11422
This theorem is referenced by:  prodmodclem2  11720  zproddc  11722
  Copyright terms: Public domain W3C validator