ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supisolem GIF version

Theorem supisolem 7036
Description: Lemma for supisoti 7038. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
supiso.2 (𝜑𝐶𝐴)
Assertion
Ref Expression
supisolem ((𝜑𝐷𝐴) → ((∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
Distinct variable groups:   𝑤,𝑣,𝑦,𝑧,𝐴   𝑣,𝐶,𝑤,𝑦,𝑧   𝑤,𝐷,𝑦,𝑧   𝜑,𝑤   𝑣,𝐹,𝑤,𝑦,𝑧   𝑤,𝑅,𝑦,𝑧   𝑣,𝑆,𝑤,𝑦,𝑧   𝑣,𝐵,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣)   𝐷(𝑣)   𝑅(𝑣)

Proof of Theorem supisolem
StepHypRef Expression
1 supiso.1 . . 3 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 supiso.2 . . 3 (𝜑𝐶𝐴)
31, 2jca 306 . 2 (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴))
4 simpll 527 . . . . . . . 8 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
54adantr 276 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
6 simplr 528 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → 𝐷𝐴)
7 simplr 528 . . . . . . . 8 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐶𝐴)
87sselda 3170 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → 𝑦𝐴)
9 isorel 5829 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐷𝐴𝑦𝐴)) → (𝐷𝑅𝑦 ↔ (𝐹𝐷)𝑆(𝐹𝑦)))
105, 6, 8, 9syl12anc 1247 . . . . . 6 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → (𝐷𝑅𝑦 ↔ (𝐹𝐷)𝑆(𝐹𝑦)))
1110notbid 668 . . . . 5 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → (¬ 𝐷𝑅𝑦 ↔ ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
1211ralbidva 2486 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ↔ ∀𝑦𝐶 ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
13 isof1o 5828 . . . . . . 7 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
144, 13syl 14 . . . . . 6 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐹:𝐴1-1-onto𝐵)
15 f1ofn 5481 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
1614, 15syl 14 . . . . 5 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐹 Fn 𝐴)
17 breq2 4022 . . . . . . 7 (𝑤 = (𝐹𝑦) → ((𝐹𝐷)𝑆𝑤 ↔ (𝐹𝐷)𝑆(𝐹𝑦)))
1817notbid 668 . . . . . 6 (𝑤 = (𝐹𝑦) → (¬ (𝐹𝐷)𝑆𝑤 ↔ ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
1918ralima 5776 . . . . 5 ((𝐹 Fn 𝐴𝐶𝐴) → (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ↔ ∀𝑦𝐶 ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
2016, 7, 19syl2anc 411 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ↔ ∀𝑦𝐶 ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
2112, 20bitr4d 191 . . 3 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ↔ ∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤))
224adantr 276 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
23 simpr 110 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
24 simplr 528 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐷𝐴)
25 isorel 5829 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑦𝐴𝐷𝐴)) → (𝑦𝑅𝐷 ↔ (𝐹𝑦)𝑆(𝐹𝐷)))
2622, 23, 24, 25syl12anc 1247 . . . . . 6 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (𝑦𝑅𝐷 ↔ (𝐹𝑦)𝑆(𝐹𝐷)))
2722adantr 276 . . . . . . . . 9 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
28 simplr 528 . . . . . . . . 9 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → 𝑦𝐴)
297adantr 276 . . . . . . . . . 10 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐶𝐴)
3029sselda 3170 . . . . . . . . 9 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → 𝑧𝐴)
31 isorel 5829 . . . . . . . . 9 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑦𝐴𝑧𝐴)) → (𝑦𝑅𝑧 ↔ (𝐹𝑦)𝑆(𝐹𝑧)))
3227, 28, 30, 31syl12anc 1247 . . . . . . . 8 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → (𝑦𝑅𝑧 ↔ (𝐹𝑦)𝑆(𝐹𝑧)))
3332rexbidva 2487 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (∃𝑧𝐶 𝑦𝑅𝑧 ↔ ∃𝑧𝐶 (𝐹𝑦)𝑆(𝐹𝑧)))
3416adantr 276 . . . . . . . 8 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐹 Fn 𝐴)
35 breq2 4022 . . . . . . . . 9 (𝑣 = (𝐹𝑧) → ((𝐹𝑦)𝑆𝑣 ↔ (𝐹𝑦)𝑆(𝐹𝑧)))
3635rexima 5775 . . . . . . . 8 ((𝐹 Fn 𝐴𝐶𝐴) → (∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣 ↔ ∃𝑧𝐶 (𝐹𝑦)𝑆(𝐹𝑧)))
3734, 29, 36syl2anc 411 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣 ↔ ∃𝑧𝐶 (𝐹𝑦)𝑆(𝐹𝑧)))
3833, 37bitr4d 191 . . . . . 6 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (∃𝑧𝐶 𝑦𝑅𝑧 ↔ ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣))
3926, 38imbi12d 234 . . . . 5 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → ((𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧) ↔ ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣)))
4039ralbidva 2486 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣)))
41 f1ofo 5487 . . . . 5 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
42 breq1 4021 . . . . . . 7 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦)𝑆(𝐹𝐷) ↔ 𝑤𝑆(𝐹𝐷)))
43 breq1 4021 . . . . . . . 8 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦)𝑆𝑣𝑤𝑆𝑣))
4443rexbidv 2491 . . . . . . 7 ((𝐹𝑦) = 𝑤 → (∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣 ↔ ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))
4542, 44imbi12d 234 . . . . . 6 ((𝐹𝑦) = 𝑤 → (((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣) ↔ (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4645cbvfo 5806 . . . . 5 (𝐹:𝐴onto𝐵 → (∀𝑦𝐴 ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4714, 41, 463syl 17 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐴 ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4840, 47bitrd 188 . . 3 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4921, 48anbi12d 473 . 2 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → ((∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
503, 49sylan 283 1 ((𝜑𝐷𝐴) → ((∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wral 2468  wrex 2469  wss 3144   class class class wbr 4018  cima 4647   Fn wfn 5230  ontowfo 5233  1-1-ontowf1o 5234  cfv 5235   Isom wiso 5236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244
This theorem is referenced by:  supisoex  7037  supisoti  7038
  Copyright terms: Public domain W3C validator