Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  leisorel GIF version

Theorem leisorel 10632
 Description: Version of isorel 5718 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
leisorel ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))

Proof of Theorem leisorel
StepHypRef Expression
1 simp1 982 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐹 Isom < , < (𝐴, 𝐵))
2 simp3r 1011 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷𝐴)
3 simp3l 1010 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶𝐴)
4 isorel 5718 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐷𝐴𝐶𝐴)) → (𝐷 < 𝐶 ↔ (𝐹𝐷) < (𝐹𝐶)))
54notbid 657 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐷𝐴𝐶𝐴)) → (¬ 𝐷 < 𝐶 ↔ ¬ (𝐹𝐷) < (𝐹𝐶)))
61, 2, 3, 5syl12anc 1215 . 2 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (¬ 𝐷 < 𝐶 ↔ ¬ (𝐹𝐷) < (𝐹𝐶)))
7 simp2l 1008 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐴 ⊆ ℝ*)
87, 3sseldd 3104 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶 ∈ ℝ*)
97, 2sseldd 3104 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷 ∈ ℝ*)
10 xrlenlt 7873 . . 3 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐶𝐷 ↔ ¬ 𝐷 < 𝐶))
118, 9, 10syl2anc 409 . 2 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ ¬ 𝐷 < 𝐶))
12 simp2r 1009 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐵 ⊆ ℝ*)
13 isof1o 5717 . . . . . 6 (𝐹 Isom < , < (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
14 f1of 5376 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
151, 13, 143syl 17 . . . . 5 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐹:𝐴𝐵)
1615, 3ffvelrnd 5565 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐶) ∈ 𝐵)
1712, 16sseldd 3104 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐶) ∈ ℝ*)
1815, 2ffvelrnd 5565 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐷) ∈ 𝐵)
1912, 18sseldd 3104 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐷) ∈ ℝ*)
20 xrlenlt 7873 . . 3 (((𝐹𝐶) ∈ ℝ* ∧ (𝐹𝐷) ∈ ℝ*) → ((𝐹𝐶) ≤ (𝐹𝐷) ↔ ¬ (𝐹𝐷) < (𝐹𝐶)))
2117, 19, 20syl2anc 409 . 2 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ≤ (𝐹𝐷) ↔ ¬ (𝐹𝐷) < (𝐹𝐶)))
226, 11, 213bitr4d 219 1 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   ∈ wcel 1481   ⊆ wss 3077   class class class wbr 3938  ⟶wf 5128  –1-1-onto→wf1o 5131  ‘cfv 5132   Isom wiso 5133  ℝ*cxr 7843   < clt 7844   ≤ cle 7845 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4140 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2692  df-sbc 2915  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-br 3939  df-opab 3999  df-id 4224  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-f1 5137  df-f1o 5139  df-fv 5140  df-isom 5141  df-le 7850 This theorem is referenced by:  seq3coll  10637  summodclem2a  11202  prodmodclem2a  11397
 Copyright terms: Public domain W3C validator