ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leisorel GIF version

Theorem leisorel 10750
Description: Version of isorel 5776 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
leisorel ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))

Proof of Theorem leisorel
StepHypRef Expression
1 simp1 987 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐹 Isom < , < (𝐴, 𝐵))
2 simp3r 1016 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷𝐴)
3 simp3l 1015 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶𝐴)
4 isorel 5776 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐷𝐴𝐶𝐴)) → (𝐷 < 𝐶 ↔ (𝐹𝐷) < (𝐹𝐶)))
54notbid 657 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐷𝐴𝐶𝐴)) → (¬ 𝐷 < 𝐶 ↔ ¬ (𝐹𝐷) < (𝐹𝐶)))
61, 2, 3, 5syl12anc 1226 . 2 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (¬ 𝐷 < 𝐶 ↔ ¬ (𝐹𝐷) < (𝐹𝐶)))
7 simp2l 1013 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐴 ⊆ ℝ*)
87, 3sseldd 3143 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶 ∈ ℝ*)
97, 2sseldd 3143 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷 ∈ ℝ*)
10 xrlenlt 7963 . . 3 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐶𝐷 ↔ ¬ 𝐷 < 𝐶))
118, 9, 10syl2anc 409 . 2 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ ¬ 𝐷 < 𝐶))
12 simp2r 1014 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐵 ⊆ ℝ*)
13 isof1o 5775 . . . . . 6 (𝐹 Isom < , < (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
14 f1of 5432 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
151, 13, 143syl 17 . . . . 5 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐹:𝐴𝐵)
1615, 3ffvelrnd 5621 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐶) ∈ 𝐵)
1712, 16sseldd 3143 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐶) ∈ ℝ*)
1815, 2ffvelrnd 5621 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐷) ∈ 𝐵)
1912, 18sseldd 3143 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐷) ∈ ℝ*)
20 xrlenlt 7963 . . 3 (((𝐹𝐶) ∈ ℝ* ∧ (𝐹𝐷) ∈ ℝ*) → ((𝐹𝐶) ≤ (𝐹𝐷) ↔ ¬ (𝐹𝐷) < (𝐹𝐶)))
2117, 19, 20syl2anc 409 . 2 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ≤ (𝐹𝐷) ↔ ¬ (𝐹𝐷) < (𝐹𝐶)))
226, 11, 213bitr4d 219 1 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 968  wcel 2136  wss 3116   class class class wbr 3982  wf 5184  1-1-ontowf1o 5187  cfv 5188   Isom wiso 5189  *cxr 7932   < clt 7933  cle 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-f1o 5195  df-fv 5196  df-isom 5197  df-le 7939
This theorem is referenced by:  seq3coll  10755  summodclem2a  11322  prodmodclem2a  11517
  Copyright terms: Public domain W3C validator