ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leisorel GIF version

Theorem leisorel 10908
Description: Version of isorel 5851 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
leisorel ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))

Proof of Theorem leisorel
StepHypRef Expression
1 simp1 999 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐹 Isom < , < (𝐴, 𝐵))
2 simp3r 1028 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷𝐴)
3 simp3l 1027 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶𝐴)
4 isorel 5851 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐷𝐴𝐶𝐴)) → (𝐷 < 𝐶 ↔ (𝐹𝐷) < (𝐹𝐶)))
54notbid 668 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐷𝐴𝐶𝐴)) → (¬ 𝐷 < 𝐶 ↔ ¬ (𝐹𝐷) < (𝐹𝐶)))
61, 2, 3, 5syl12anc 1247 . 2 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (¬ 𝐷 < 𝐶 ↔ ¬ (𝐹𝐷) < (𝐹𝐶)))
7 simp2l 1025 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐴 ⊆ ℝ*)
87, 3sseldd 3180 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶 ∈ ℝ*)
97, 2sseldd 3180 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷 ∈ ℝ*)
10 xrlenlt 8084 . . 3 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐶𝐷 ↔ ¬ 𝐷 < 𝐶))
118, 9, 10syl2anc 411 . 2 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ ¬ 𝐷 < 𝐶))
12 simp2r 1026 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐵 ⊆ ℝ*)
13 isof1o 5850 . . . . . 6 (𝐹 Isom < , < (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
14 f1of 5500 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
151, 13, 143syl 17 . . . . 5 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → 𝐹:𝐴𝐵)
1615, 3ffvelcdmd 5694 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐶) ∈ 𝐵)
1712, 16sseldd 3180 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐶) ∈ ℝ*)
1815, 2ffvelcdmd 5694 . . . 4 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐷) ∈ 𝐵)
1912, 18sseldd 3180 . . 3 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐷) ∈ ℝ*)
20 xrlenlt 8084 . . 3 (((𝐹𝐶) ∈ ℝ* ∧ (𝐹𝐷) ∈ ℝ*) → ((𝐹𝐶) ≤ (𝐹𝐷) ↔ ¬ (𝐹𝐷) < (𝐹𝐶)))
2117, 19, 20syl2anc 411 . 2 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ≤ (𝐹𝐷) ↔ ¬ (𝐹𝐷) < (𝐹𝐶)))
226, 11, 213bitr4d 220 1 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980  wcel 2164  wss 3153   class class class wbr 4029  wf 5250  1-1-ontowf1o 5253  cfv 5254   Isom wiso 5255  *cxr 8053   < clt 8054  cle 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-f1o 5261  df-fv 5262  df-isom 5263  df-le 8060
This theorem is referenced by:  seq3coll  10913  summodclem2a  11524  prodmodclem2a  11719
  Copyright terms: Public domain W3C validator