| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmnn | GIF version | ||
| Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| prmnn | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm 12626 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑧 ∈ ℕ ∣ 𝑧 ∥ 𝑃} ≈ 2o)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 {crab 2512 class class class wbr 4082 2oc2o 6554 ≈ cen 6883 ℕcn 9106 ∥ cdvds 12293 ℙcprime 12624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-prm 12625 |
| This theorem is referenced by: prmz 12628 prmssnn 12629 nprmdvds1 12657 isprm5lem 12658 isprm5 12659 coprm 12661 euclemma 12663 prmdvdsexpr 12667 cncongrprm 12674 phiprmpw 12739 fermltl 12751 prmdiv 12752 prmdiveq 12753 prmdivdiv 12754 m1dvdsndvds 12766 vfermltl 12769 powm2modprm 12770 reumodprminv 12771 modprm0 12772 nnnn0modprm0 12773 modprmn0modprm0 12774 oddprm 12777 nnoddn2prm 12778 prm23lt5 12781 pcpremul 12811 pcdvdsb 12838 pcelnn 12839 pcidlem 12841 pcid 12842 pcdvdstr 12845 pcgcd1 12846 pcprmpw2 12851 dvdsprmpweqnn 12854 dvdsprmpweqle 12855 pcaddlem 12857 pcadd 12858 pcmptcl 12860 pcmpt 12861 pcmpt2 12862 pcfaclem 12867 pcfac 12868 pcbc 12869 expnprm 12871 oddprmdvds 12872 prmpwdvds 12873 pockthlem 12874 pockthg 12875 pockthi 12876 1arith 12885 4sqlem11 12919 4sqlem12 12920 4sqlem13m 12921 4sqlem14 12922 4sqlem17 12925 4sqlem18 12926 4sqlem19 12927 znidom 14615 wilthlem1 15648 dvdsppwf1o 15657 sgmppw 15660 0sgmppw 15661 1sgmprm 15662 mersenne 15665 perfect1 15666 perfect 15669 lgslem1 15673 lgslem4 15676 lgsval 15677 lgsval2lem 15683 lgsvalmod 15692 lgsmod 15699 lgsdirprm 15707 lgsne0 15711 lgsprme0 15715 gausslemma2dlem0c 15724 gausslemma2dlem1a 15731 gausslemma2dlem5a 15738 lgseisenlem1 15743 lgseisenlem2 15744 lgseisenlem3 15745 lgseisenlem4 15746 lgsquadlem1 15750 lgsquadlem3 15752 lgsquad2lem2 15755 lgsquad2 15756 m1lgs 15758 2lgslem1a 15761 2lgslem1c 15763 2lgs 15777 2sqlem3 15790 2sqlem8 15796 |
| Copyright terms: Public domain | W3C validator |