| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmnn | GIF version | ||
| Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| prmnn | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm 12402 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑧 ∈ ℕ ∣ 𝑧 ∥ 𝑃} ≈ 2o)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 {crab 2487 class class class wbr 4043 2oc2o 6495 ≈ cen 6824 ℕcn 9035 ∥ cdvds 12069 ℙcprime 12400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rab 2492 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-prm 12401 |
| This theorem is referenced by: prmz 12404 prmssnn 12405 nprmdvds1 12433 isprm5lem 12434 isprm5 12435 coprm 12437 euclemma 12439 prmdvdsexpr 12443 cncongrprm 12450 phiprmpw 12515 fermltl 12527 prmdiv 12528 prmdiveq 12529 prmdivdiv 12530 m1dvdsndvds 12542 vfermltl 12545 powm2modprm 12546 reumodprminv 12547 modprm0 12548 nnnn0modprm0 12549 modprmn0modprm0 12550 oddprm 12553 nnoddn2prm 12554 prm23lt5 12557 pcpremul 12587 pcdvdsb 12614 pcelnn 12615 pcidlem 12617 pcid 12618 pcdvdstr 12621 pcgcd1 12622 pcprmpw2 12627 dvdsprmpweqnn 12630 dvdsprmpweqle 12631 pcaddlem 12633 pcadd 12634 pcmptcl 12636 pcmpt 12637 pcmpt2 12638 pcfaclem 12643 pcfac 12644 pcbc 12645 expnprm 12647 oddprmdvds 12648 prmpwdvds 12649 pockthlem 12650 pockthg 12651 pockthi 12652 1arith 12661 4sqlem11 12695 4sqlem12 12696 4sqlem13m 12697 4sqlem14 12698 4sqlem17 12701 4sqlem18 12702 4sqlem19 12703 znidom 14390 wilthlem1 15423 dvdsppwf1o 15432 sgmppw 15435 0sgmppw 15436 1sgmprm 15437 mersenne 15440 perfect1 15441 perfect 15444 lgslem1 15448 lgslem4 15451 lgsval 15452 lgsval2lem 15458 lgsvalmod 15467 lgsmod 15474 lgsdirprm 15482 lgsne0 15486 lgsprme0 15490 gausslemma2dlem0c 15499 gausslemma2dlem1a 15506 gausslemma2dlem5a 15513 lgseisenlem1 15518 lgseisenlem2 15519 lgseisenlem3 15520 lgseisenlem4 15521 lgsquadlem1 15525 lgsquadlem3 15527 lgsquad2lem2 15530 lgsquad2 15531 m1lgs 15533 2lgslem1a 15536 2lgslem1c 15538 2lgs 15552 2sqlem3 15565 2sqlem8 15571 |
| Copyright terms: Public domain | W3C validator |