| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmnn | GIF version | ||
| Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| prmnn | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm 12373 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑧 ∈ ℕ ∣ 𝑧 ∥ 𝑃} ≈ 2o)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 {crab 2487 class class class wbr 4043 2oc2o 6495 ≈ cen 6824 ℕcn 9035 ∥ cdvds 12040 ℙcprime 12371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rab 2492 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-prm 12372 |
| This theorem is referenced by: prmz 12375 prmssnn 12376 nprmdvds1 12404 isprm5lem 12405 isprm5 12406 coprm 12408 euclemma 12410 prmdvdsexpr 12414 cncongrprm 12421 phiprmpw 12486 fermltl 12498 prmdiv 12499 prmdiveq 12500 prmdivdiv 12501 m1dvdsndvds 12513 vfermltl 12516 powm2modprm 12517 reumodprminv 12518 modprm0 12519 nnnn0modprm0 12520 modprmn0modprm0 12521 oddprm 12524 nnoddn2prm 12525 prm23lt5 12528 pcpremul 12558 pcdvdsb 12585 pcelnn 12586 pcidlem 12588 pcid 12589 pcdvdstr 12592 pcgcd1 12593 pcprmpw2 12598 dvdsprmpweqnn 12601 dvdsprmpweqle 12602 pcaddlem 12604 pcadd 12605 pcmptcl 12607 pcmpt 12608 pcmpt2 12609 pcfaclem 12614 pcfac 12615 pcbc 12616 expnprm 12618 oddprmdvds 12619 prmpwdvds 12620 pockthlem 12621 pockthg 12622 pockthi 12623 1arith 12632 4sqlem11 12666 4sqlem12 12667 4sqlem13m 12668 4sqlem14 12669 4sqlem17 12672 4sqlem18 12673 4sqlem19 12674 znidom 14361 wilthlem1 15394 dvdsppwf1o 15403 sgmppw 15406 0sgmppw 15407 1sgmprm 15408 mersenne 15411 perfect1 15412 perfect 15415 lgslem1 15419 lgslem4 15422 lgsval 15423 lgsval2lem 15429 lgsvalmod 15438 lgsmod 15445 lgsdirprm 15453 lgsne0 15457 lgsprme0 15461 gausslemma2dlem0c 15470 gausslemma2dlem1a 15477 gausslemma2dlem5a 15484 lgseisenlem1 15489 lgseisenlem2 15490 lgseisenlem3 15491 lgseisenlem4 15492 lgsquadlem1 15496 lgsquadlem3 15498 lgsquad2lem2 15501 lgsquad2 15502 m1lgs 15504 2lgslem1a 15507 2lgslem1c 15509 2lgs 15523 2sqlem3 15536 2sqlem8 15542 |
| Copyright terms: Public domain | W3C validator |