![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prmnn | GIF version |
Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
prmnn | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm 12247 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑧 ∈ ℕ ∣ 𝑧 ∥ 𝑃} ≈ 2o)) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 {crab 2476 class class class wbr 4029 2oc2o 6463 ≈ cen 6792 ℕcn 8982 ∥ cdvds 11930 ℙcprime 12245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rab 2481 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-prm 12246 |
This theorem is referenced by: prmz 12249 prmssnn 12250 nprmdvds1 12278 isprm5lem 12279 isprm5 12280 coprm 12282 euclemma 12284 prmdvdsexpr 12288 cncongrprm 12295 phiprmpw 12360 fermltl 12372 prmdiv 12373 prmdiveq 12374 prmdivdiv 12375 m1dvdsndvds 12386 vfermltl 12389 powm2modprm 12390 reumodprminv 12391 modprm0 12392 nnnn0modprm0 12393 modprmn0modprm0 12394 oddprm 12397 nnoddn2prm 12398 prm23lt5 12401 pcpremul 12431 pcdvdsb 12458 pcelnn 12459 pcidlem 12461 pcid 12462 pcdvdstr 12465 pcgcd1 12466 pcprmpw2 12471 dvdsprmpweqnn 12474 dvdsprmpweqle 12475 pcaddlem 12477 pcadd 12478 pcmptcl 12480 pcmpt 12481 pcmpt2 12482 pcfaclem 12487 pcfac 12488 pcbc 12489 expnprm 12491 oddprmdvds 12492 prmpwdvds 12493 pockthlem 12494 pockthg 12495 pockthi 12496 1arith 12505 4sqlem11 12539 4sqlem12 12540 4sqlem13m 12541 4sqlem14 12542 4sqlem17 12545 4sqlem18 12546 4sqlem19 12547 znidom 14145 wilthlem1 15112 lgslem1 15116 lgslem4 15119 lgsval 15120 lgsval2lem 15126 lgsvalmod 15135 lgsmod 15142 lgsdirprm 15150 lgsne0 15154 lgsprme0 15158 gausslemma2dlem0c 15167 gausslemma2dlem1a 15174 gausslemma2dlem5a 15181 lgseisenlem1 15186 lgseisenlem2 15187 lgseisenlem3 15188 lgseisenlem4 15189 lgsquadlem1 15191 m1lgs 15192 2sqlem3 15204 2sqlem8 15210 |
Copyright terms: Public domain | W3C validator |