| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmnn | GIF version | ||
| Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| prmnn | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm 12506 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑧 ∈ ℕ ∣ 𝑧 ∥ 𝑃} ≈ 2o)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 {crab 2489 class class class wbr 4051 2oc2o 6509 ≈ cen 6838 ℕcn 9056 ∥ cdvds 12173 ℙcprime 12504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rab 2494 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-prm 12505 |
| This theorem is referenced by: prmz 12508 prmssnn 12509 nprmdvds1 12537 isprm5lem 12538 isprm5 12539 coprm 12541 euclemma 12543 prmdvdsexpr 12547 cncongrprm 12554 phiprmpw 12619 fermltl 12631 prmdiv 12632 prmdiveq 12633 prmdivdiv 12634 m1dvdsndvds 12646 vfermltl 12649 powm2modprm 12650 reumodprminv 12651 modprm0 12652 nnnn0modprm0 12653 modprmn0modprm0 12654 oddprm 12657 nnoddn2prm 12658 prm23lt5 12661 pcpremul 12691 pcdvdsb 12718 pcelnn 12719 pcidlem 12721 pcid 12722 pcdvdstr 12725 pcgcd1 12726 pcprmpw2 12731 dvdsprmpweqnn 12734 dvdsprmpweqle 12735 pcaddlem 12737 pcadd 12738 pcmptcl 12740 pcmpt 12741 pcmpt2 12742 pcfaclem 12747 pcfac 12748 pcbc 12749 expnprm 12751 oddprmdvds 12752 prmpwdvds 12753 pockthlem 12754 pockthg 12755 pockthi 12756 1arith 12765 4sqlem11 12799 4sqlem12 12800 4sqlem13m 12801 4sqlem14 12802 4sqlem17 12805 4sqlem18 12806 4sqlem19 12807 znidom 14494 wilthlem1 15527 dvdsppwf1o 15536 sgmppw 15539 0sgmppw 15540 1sgmprm 15541 mersenne 15544 perfect1 15545 perfect 15548 lgslem1 15552 lgslem4 15555 lgsval 15556 lgsval2lem 15562 lgsvalmod 15571 lgsmod 15578 lgsdirprm 15586 lgsne0 15590 lgsprme0 15594 gausslemma2dlem0c 15603 gausslemma2dlem1a 15610 gausslemma2dlem5a 15617 lgseisenlem1 15622 lgseisenlem2 15623 lgseisenlem3 15624 lgseisenlem4 15625 lgsquadlem1 15629 lgsquadlem3 15631 lgsquad2lem2 15634 lgsquad2 15635 m1lgs 15637 2lgslem1a 15640 2lgslem1c 15642 2lgs 15656 2sqlem3 15669 2sqlem8 15675 |
| Copyright terms: Public domain | W3C validator |