| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmnn | GIF version | ||
| Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| prmnn | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprm 12304 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑧 ∈ ℕ ∣ 𝑧 ∥ 𝑃} ≈ 2o)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 {crab 2479 class class class wbr 4034 2oc2o 6477 ≈ cen 6806 ℕcn 9009 ∥ cdvds 11971 ℙcprime 12302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-prm 12303 |
| This theorem is referenced by: prmz 12306 prmssnn 12307 nprmdvds1 12335 isprm5lem 12336 isprm5 12337 coprm 12339 euclemma 12341 prmdvdsexpr 12345 cncongrprm 12352 phiprmpw 12417 fermltl 12429 prmdiv 12430 prmdiveq 12431 prmdivdiv 12432 m1dvdsndvds 12444 vfermltl 12447 powm2modprm 12448 reumodprminv 12449 modprm0 12450 nnnn0modprm0 12451 modprmn0modprm0 12452 oddprm 12455 nnoddn2prm 12456 prm23lt5 12459 pcpremul 12489 pcdvdsb 12516 pcelnn 12517 pcidlem 12519 pcid 12520 pcdvdstr 12523 pcgcd1 12524 pcprmpw2 12529 dvdsprmpweqnn 12532 dvdsprmpweqle 12533 pcaddlem 12535 pcadd 12536 pcmptcl 12538 pcmpt 12539 pcmpt2 12540 pcfaclem 12545 pcfac 12546 pcbc 12547 expnprm 12549 oddprmdvds 12550 prmpwdvds 12551 pockthlem 12552 pockthg 12553 pockthi 12554 1arith 12563 4sqlem11 12597 4sqlem12 12598 4sqlem13m 12599 4sqlem14 12600 4sqlem17 12603 4sqlem18 12604 4sqlem19 12605 znidom 14291 wilthlem1 15324 dvdsppwf1o 15333 sgmppw 15336 0sgmppw 15337 1sgmprm 15338 mersenne 15341 perfect1 15342 perfect 15345 lgslem1 15349 lgslem4 15352 lgsval 15353 lgsval2lem 15359 lgsvalmod 15368 lgsmod 15375 lgsdirprm 15383 lgsne0 15387 lgsprme0 15391 gausslemma2dlem0c 15400 gausslemma2dlem1a 15407 gausslemma2dlem5a 15414 lgseisenlem1 15419 lgseisenlem2 15420 lgseisenlem3 15421 lgseisenlem4 15422 lgsquadlem1 15426 lgsquadlem3 15428 lgsquad2lem2 15431 lgsquad2 15432 m1lgs 15434 2lgslem1a 15437 2lgslem1c 15439 2lgs 15453 2sqlem3 15466 2sqlem8 15472 |
| Copyright terms: Public domain | W3C validator |