![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prmnn | GIF version |
Description: A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
prmnn | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm 12111 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑧 ∈ ℕ ∣ 𝑧 ∥ 𝑃} ≈ 2o)) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 {crab 2459 class class class wbr 4005 2oc2o 6413 ≈ cen 6740 ℕcn 8921 ∥ cdvds 11796 ℙcprime 12109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rab 2464 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-prm 12110 |
This theorem is referenced by: prmz 12113 prmssnn 12114 nprmdvds1 12142 isprm5lem 12143 isprm5 12144 coprm 12146 euclemma 12148 prmdvdsexpr 12152 cncongrprm 12159 phiprmpw 12224 fermltl 12236 prmdiv 12237 prmdiveq 12238 prmdivdiv 12239 m1dvdsndvds 12250 vfermltl 12253 powm2modprm 12254 reumodprminv 12255 modprm0 12256 nnnn0modprm0 12257 modprmn0modprm0 12258 oddprm 12261 nnoddn2prm 12262 prm23lt5 12265 pcpremul 12295 pcdvdsb 12321 pcelnn 12322 pcidlem 12324 pcid 12325 pcdvdstr 12328 pcgcd1 12329 pcprmpw2 12334 dvdsprmpweqnn 12337 dvdsprmpweqle 12338 pcaddlem 12340 pcadd 12341 pcmptcl 12342 pcmpt 12343 pcmpt2 12344 pcfaclem 12349 pcfac 12350 pcbc 12351 expnprm 12353 oddprmdvds 12354 prmpwdvds 12355 pockthlem 12356 pockthg 12357 pockthi 12358 1arith 12367 lgslem1 14486 lgslem4 14489 lgsval 14490 lgsval2lem 14496 lgsvalmod 14505 lgsmod 14512 lgsdirprm 14520 lgsne0 14524 lgsprme0 14528 lgseisenlem1 14535 lgseisenlem2 14536 m1lgs 14537 2sqlem3 14549 2sqlem8 14555 |
Copyright terms: Public domain | W3C validator |