HomeHome Intuitionistic Logic Explorer
Theorem List (p. 122 of 149)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12101-12200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdivgcdcoprm0 12101 Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€ ∧ 𝐡 β‰  0) β†’ ((𝐴 / (𝐴 gcd 𝐡)) gcd (𝐡 / (𝐴 gcd 𝐡))) = 1)
 
Theoremdivgcdcoprmex 12102* Integers divided by gcd are coprime (see ProofWiki "Integers Divided by GCD are Coprime", 11-Jul-2021, https://proofwiki.org/wiki/Integers_Divided_by_GCD_are_Coprime): Any pair of integers, not both zero, can be reduced to a pair of coprime ones by dividing them by their gcd. (Contributed by AV, 12-Jul-2021.)
((𝐴 ∈ β„€ ∧ (𝐡 ∈ β„€ ∧ 𝐡 β‰  0) ∧ 𝑀 = (𝐴 gcd 𝐡)) β†’ βˆƒπ‘Ž ∈ β„€ βˆƒπ‘ ∈ β„€ (𝐴 = (𝑀 Β· π‘Ž) ∧ 𝐡 = (𝑀 Β· 𝑏) ∧ (π‘Ž gcd 𝑏) = 1))
 
Theoremcncongr1 12103 One direction of the bicondition in cncongr 12105. Theorem 5.4 in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.)
(((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€ ∧ 𝐢 ∈ β„€) ∧ (𝑁 ∈ β„• ∧ 𝑀 = (𝑁 / (𝐢 gcd 𝑁)))) β†’ (((𝐴 Β· 𝐢) mod 𝑁) = ((𝐡 Β· 𝐢) mod 𝑁) β†’ (𝐴 mod 𝑀) = (𝐡 mod 𝑀)))
 
Theoremcncongr2 12104 The other direction of the bicondition in cncongr 12105. (Contributed by AV, 11-Jul-2021.)
(((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€ ∧ 𝐢 ∈ β„€) ∧ (𝑁 ∈ β„• ∧ 𝑀 = (𝑁 / (𝐢 gcd 𝑁)))) β†’ ((𝐴 mod 𝑀) = (𝐡 mod 𝑀) β†’ ((𝐴 Β· 𝐢) mod 𝑁) = ((𝐡 Β· 𝐢) mod 𝑁)))
 
Theoremcncongr 12105 Cancellability of Congruences (see ProofWiki "Cancellability of Congruences, https://proofwiki.org/wiki/Cancellability_of_Congruences, 10-Jul-2021): Two products with a common factor are congruent modulo a positive integer iff the other factors are congruent modulo the integer divided by the greates common divisor of the integer and the common factor. See also Theorem 5.4 "Cancellation law" in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.)
(((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€ ∧ 𝐢 ∈ β„€) ∧ (𝑁 ∈ β„• ∧ 𝑀 = (𝑁 / (𝐢 gcd 𝑁)))) β†’ (((𝐴 Β· 𝐢) mod 𝑁) = ((𝐡 Β· 𝐢) mod 𝑁) ↔ (𝐴 mod 𝑀) = (𝐡 mod 𝑀)))
 
Theoremcncongrcoprm 12106 Corollary 1 of Cancellability of Congruences: Two products with a common factor are congruent modulo an integer being coprime to the common factor iff the other factors are congruent modulo the integer. (Contributed by AV, 13-Jul-2021.)
(((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€ ∧ 𝐢 ∈ β„€) ∧ (𝑁 ∈ β„• ∧ (𝐢 gcd 𝑁) = 1)) β†’ (((𝐴 Β· 𝐢) mod 𝑁) = ((𝐡 Β· 𝐢) mod 𝑁) ↔ (𝐴 mod 𝑁) = (𝐡 mod 𝑁)))
 
5.2  Elementary prime number theory
 
5.2.1  Elementary properties

Remark: to represent odd prime numbers, i.e., all prime numbers except 2, the idiom 𝑃 ∈ (β„™ βˆ– {2}) is used. It is a little bit shorter than (𝑃 ∈ β„™ ∧ 𝑃 β‰  2). Both representations can be converted into each other by eldifsn 3720.

 
Syntaxcprime 12107 Extend the definition of a class to include the set of prime numbers.
class β„™
 
Definitiondf-prm 12108* Define the set of prime numbers. (Contributed by Paul Chapman, 22-Jun-2011.)
β„™ = {𝑝 ∈ β„• ∣ {𝑛 ∈ β„• ∣ 𝑛 βˆ₯ 𝑝} β‰ˆ 2o}
 
Theoremisprm 12109* The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝑃 ∈ β„™ ↔ (𝑃 ∈ β„• ∧ {𝑛 ∈ β„• ∣ 𝑛 βˆ₯ 𝑃} β‰ˆ 2o))
 
Theoremprmnn 12110 A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝑃 ∈ β„™ β†’ 𝑃 ∈ β„•)
 
Theoremprmz 12111 A prime number is an integer. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Jonathan Yan, 16-Jul-2017.)
(𝑃 ∈ β„™ β†’ 𝑃 ∈ β„€)
 
Theoremprmssnn 12112 The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.)
β„™ βŠ† β„•
 
Theoremprmex 12113 The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.)
β„™ ∈ V
 
Theorem1nprm 12114 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.)
Β¬ 1 ∈ β„™
 
Theorem1idssfct 12115* The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝑁 ∈ β„• β†’ {1, 𝑁} βŠ† {𝑛 ∈ β„• ∣ 𝑛 βˆ₯ 𝑁})
 
Theoremisprm2lem 12116* Lemma for isprm2 12117. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝑃 ∈ β„• ∧ 𝑃 β‰  1) β†’ ({𝑛 ∈ β„• ∣ 𝑛 βˆ₯ 𝑃} β‰ˆ 2o ↔ {𝑛 ∈ β„• ∣ 𝑛 βˆ₯ 𝑃} = {1, 𝑃}))
 
Theoremisprm2 12117* The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in [ApostolNT] p. 16. (Contributed by Paul Chapman, 26-Oct-2012.)
(𝑃 ∈ β„™ ↔ (𝑃 ∈ (β„€β‰₯β€˜2) ∧ βˆ€π‘§ ∈ β„• (𝑧 βˆ₯ 𝑃 β†’ (𝑧 = 1 ∨ 𝑧 = 𝑃))))
 
Theoremisprm3 12118* The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.)
(𝑃 ∈ β„™ ↔ (𝑃 ∈ (β„€β‰₯β€˜2) ∧ βˆ€π‘§ ∈ (2...(𝑃 βˆ’ 1)) Β¬ 𝑧 βˆ₯ 𝑃))
 
Theoremisprm4 12119* The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.)
(𝑃 ∈ β„™ ↔ (𝑃 ∈ (β„€β‰₯β€˜2) ∧ βˆ€π‘§ ∈ (β„€β‰₯β€˜2)(𝑧 βˆ₯ 𝑃 β†’ 𝑧 = 𝑃)))
 
Theoremprmind2 12120* A variation on prmind 12121 assuming complete induction for primes. (Contributed by Mario Carneiro, 20-Jun-2015.)
(π‘₯ = 1 β†’ (πœ‘ ↔ πœ“))    &   (π‘₯ = 𝑦 β†’ (πœ‘ ↔ πœ’))    &   (π‘₯ = 𝑧 β†’ (πœ‘ ↔ πœƒ))    &   (π‘₯ = (𝑦 Β· 𝑧) β†’ (πœ‘ ↔ 𝜏))    &   (π‘₯ = 𝐴 β†’ (πœ‘ ↔ πœ‚))    &   πœ“    &   ((π‘₯ ∈ β„™ ∧ βˆ€π‘¦ ∈ (1...(π‘₯ βˆ’ 1))πœ’) β†’ πœ‘)    &   ((𝑦 ∈ (β„€β‰₯β€˜2) ∧ 𝑧 ∈ (β„€β‰₯β€˜2)) β†’ ((πœ’ ∧ πœƒ) β†’ 𝜏))    β‡’   (𝐴 ∈ β„• β†’ πœ‚)
 
Theoremprmind 12121* Perform induction over the multiplicative structure of β„•. If a property πœ‘(π‘₯) holds for the primes and 1 and is preserved under multiplication, then it holds for every positive integer. (Contributed by Mario Carneiro, 20-Jun-2015.)
(π‘₯ = 1 β†’ (πœ‘ ↔ πœ“))    &   (π‘₯ = 𝑦 β†’ (πœ‘ ↔ πœ’))    &   (π‘₯ = 𝑧 β†’ (πœ‘ ↔ πœƒ))    &   (π‘₯ = (𝑦 Β· 𝑧) β†’ (πœ‘ ↔ 𝜏))    &   (π‘₯ = 𝐴 β†’ (πœ‘ ↔ πœ‚))    &   πœ“    &   (π‘₯ ∈ β„™ β†’ πœ‘)    &   ((𝑦 ∈ (β„€β‰₯β€˜2) ∧ 𝑧 ∈ (β„€β‰₯β€˜2)) β†’ ((πœ’ ∧ πœƒ) β†’ 𝜏))    β‡’   (𝐴 ∈ β„• β†’ πœ‚)
 
Theoremdvdsprime 12122 If 𝑀 divides a prime, then 𝑀 is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014.)
((𝑃 ∈ β„™ ∧ 𝑀 ∈ β„•) β†’ (𝑀 βˆ₯ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1)))
 
Theoremnprm 12123 A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015.)
((𝐴 ∈ (β„€β‰₯β€˜2) ∧ 𝐡 ∈ (β„€β‰₯β€˜2)) β†’ Β¬ (𝐴 Β· 𝐡) ∈ β„™)
 
Theoremnprmi 12124 An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
𝐴 ∈ β„•    &   π΅ ∈ β„•    &   1 < 𝐴    &   1 < 𝐡    &   (𝐴 Β· 𝐡) = 𝑁    β‡’    Β¬ 𝑁 ∈ β„™
 
Theoremdvdsnprmd 12125 If a number is divisible by an integer greater than 1 and less then the number, the number is not prime. (Contributed by AV, 24-Jul-2021.)
(πœ‘ β†’ 1 < 𝐴)    &   (πœ‘ β†’ 𝐴 < 𝑁)    &   (πœ‘ β†’ 𝐴 βˆ₯ 𝑁)    β‡’   (πœ‘ β†’ Β¬ 𝑁 ∈ β„™)
 
Theoremprm2orodd 12126 A prime number is either 2 or odd. (Contributed by AV, 19-Jun-2021.)
(𝑃 ∈ β„™ β†’ (𝑃 = 2 ∨ Β¬ 2 βˆ₯ 𝑃))
 
Theorem2prm 12127 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.)
2 ∈ β„™
 
Theorem3prm 12128 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.)
3 ∈ β„™
 
Theorem4nprm 12129 4 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 18-Feb-2014.)
Β¬ 4 ∈ β„™
 
Theoremprmdc 12130 Primality is decidable. (Contributed by Jim Kingdon, 30-Sep-2024.)
(𝑁 ∈ β„• β†’ DECID 𝑁 ∈ β„™)
 
Theoremprmuz2 12131 A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
(𝑃 ∈ β„™ β†’ 𝑃 ∈ (β„€β‰₯β€˜2))
 
Theoremprmgt1 12132 A prime number is an integer greater than 1. (Contributed by Alexander van der Vekens, 17-May-2018.)
(𝑃 ∈ β„™ β†’ 1 < 𝑃)
 
Theoremprmm2nn0 12133 Subtracting 2 from a prime number results in a nonnegative integer. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
(𝑃 ∈ β„™ β†’ (𝑃 βˆ’ 2) ∈ β„•0)
 
Theoremoddprmgt2 12134 An odd prime is greater than 2. (Contributed by AV, 20-Aug-2021.)
(𝑃 ∈ (β„™ βˆ– {2}) β†’ 2 < 𝑃)
 
Theoremoddprmge3 12135 An odd prime is greater than or equal to 3. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 20-Aug-2021.)
(𝑃 ∈ (β„™ βˆ– {2}) β†’ 𝑃 ∈ (β„€β‰₯β€˜3))
 
Theoremsqnprm 12136 A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015.)
(𝐴 ∈ β„€ β†’ Β¬ (𝐴↑2) ∈ β„™)
 
Theoremdvdsprm 12137 An integer greater than or equal to 2 divides a prime number iff it is equal to it. (Contributed by Paul Chapman, 26-Oct-2012.)
((𝑁 ∈ (β„€β‰₯β€˜2) ∧ 𝑃 ∈ β„™) β†’ (𝑁 βˆ₯ 𝑃 ↔ 𝑁 = 𝑃))
 
Theoremexprmfct 12138* Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 20-Jun-2015.)
(𝑁 ∈ (β„€β‰₯β€˜2) β†’ βˆƒπ‘ ∈ β„™ 𝑝 βˆ₯ 𝑁)
 
Theoremprmdvdsfz 12139* Each integer greater than 1 and less then or equal to a fixed number is divisible by a prime less then or equal to this fixed number. (Contributed by AV, 15-Aug-2020.)
((𝑁 ∈ β„• ∧ 𝐼 ∈ (2...𝑁)) β†’ βˆƒπ‘ ∈ β„™ (𝑝 ≀ 𝑁 ∧ 𝑝 βˆ₯ 𝐼))
 
Theoremnprmdvds1 12140 No prime number divides 1. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 2-Jul-2015.)
(𝑃 ∈ β„™ β†’ Β¬ 𝑃 βˆ₯ 1)
 
Theoremisprm5lem 12141* Lemma for isprm5 12142. The interesting direction (showing that one only needs to check prime divisors up to the square root of 𝑃). (Contributed by Jim Kingdon, 20-Oct-2024.)
(πœ‘ β†’ 𝑃 ∈ (β„€β‰₯β€˜2))    &   (πœ‘ β†’ βˆ€π‘§ ∈ β„™ ((𝑧↑2) ≀ 𝑃 β†’ Β¬ 𝑧 βˆ₯ 𝑃))    &   (πœ‘ β†’ 𝑋 ∈ (2...(𝑃 βˆ’ 1)))    β‡’   (πœ‘ β†’ Β¬ 𝑋 βˆ₯ 𝑃)
 
Theoremisprm5 12142* One need only check prime divisors of 𝑃 up to βˆšπ‘ƒ in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
(𝑃 ∈ β„™ ↔ (𝑃 ∈ (β„€β‰₯β€˜2) ∧ βˆ€π‘§ ∈ β„™ ((𝑧↑2) ≀ 𝑃 β†’ Β¬ 𝑧 βˆ₯ 𝑃)))
 
Theoremdivgcdodd 12143 Either 𝐴 / (𝐴 gcd 𝐡) is odd or 𝐡 / (𝐴 gcd 𝐡) is odd. (Contributed by Scott Fenton, 19-Apr-2014.)
((𝐴 ∈ β„• ∧ 𝐡 ∈ β„•) β†’ (Β¬ 2 βˆ₯ (𝐴 / (𝐴 gcd 𝐡)) ∨ Β¬ 2 βˆ₯ (𝐡 / (𝐴 gcd 𝐡))))
 
5.2.2  Coprimality and Euclid's lemma (cont.)

This section is about coprimality with respect to primes, and a special version of Euclid's lemma for primes is provided, see euclemma 12146.

 
Theoremcoprm 12144 A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.)
((𝑃 ∈ β„™ ∧ 𝑁 ∈ β„€) β†’ (Β¬ 𝑃 βˆ₯ 𝑁 ↔ (𝑃 gcd 𝑁) = 1))
 
Theoremprmrp 12145 Unequal prime numbers are relatively prime. (Contributed by Mario Carneiro, 23-Feb-2014.)
((𝑃 ∈ β„™ ∧ 𝑄 ∈ β„™) β†’ ((𝑃 gcd 𝑄) = 1 ↔ 𝑃 β‰  𝑄))
 
Theoremeuclemma 12146 Euclid's lemma. A prime number divides the product of two integers iff it divides at least one of them. Theorem 1.9 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 17-Nov-2012.)
((𝑃 ∈ β„™ ∧ 𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (𝑃 βˆ₯ (𝑀 Β· 𝑁) ↔ (𝑃 βˆ₯ 𝑀 ∨ 𝑃 βˆ₯ 𝑁)))
 
Theoremisprm6 12147* A number is prime iff it satisfies Euclid's lemma euclemma 12146. (Contributed by Mario Carneiro, 6-Sep-2015.)
(𝑃 ∈ β„™ ↔ (𝑃 ∈ (β„€β‰₯β€˜2) ∧ βˆ€π‘₯ ∈ β„€ βˆ€π‘¦ ∈ β„€ (𝑃 βˆ₯ (π‘₯ Β· 𝑦) β†’ (𝑃 βˆ₯ π‘₯ ∨ 𝑃 βˆ₯ 𝑦))))
 
Theoremprmdvdsexp 12148 A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014.) (Revised by Mario Carneiro, 17-Jul-2014.)
((𝑃 ∈ β„™ ∧ 𝐴 ∈ β„€ ∧ 𝑁 ∈ β„•) β†’ (𝑃 βˆ₯ (𝐴↑𝑁) ↔ 𝑃 βˆ₯ 𝐴))
 
Theoremprmdvdsexpb 12149 A prime divides a positive power of another iff they are equal. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 24-Feb-2014.)
((𝑃 ∈ β„™ ∧ 𝑄 ∈ β„™ ∧ 𝑁 ∈ β„•) β†’ (𝑃 βˆ₯ (𝑄↑𝑁) ↔ 𝑃 = 𝑄))
 
Theoremprmdvdsexpr 12150 If a prime divides a nonnegative power of another, then they are equal. (Contributed by Mario Carneiro, 16-Jan-2015.)
((𝑃 ∈ β„™ ∧ 𝑄 ∈ β„™ ∧ 𝑁 ∈ β„•0) β†’ (𝑃 βˆ₯ (𝑄↑𝑁) β†’ 𝑃 = 𝑄))
 
Theoremprmexpb 12151 Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012.)
(((𝑃 ∈ β„™ ∧ 𝑄 ∈ β„™) ∧ (𝑀 ∈ β„• ∧ 𝑁 ∈ β„•)) β†’ ((𝑃↑𝑀) = (𝑄↑𝑁) ↔ (𝑃 = 𝑄 ∧ 𝑀 = 𝑁)))
 
Theoremprmfac1 12152 The factorial of a number only contains primes less than the base. (Contributed by Mario Carneiro, 6-Mar-2014.)
((𝑁 ∈ β„•0 ∧ 𝑃 ∈ β„™ ∧ 𝑃 βˆ₯ (!β€˜π‘)) β†’ 𝑃 ≀ 𝑁)
 
Theoremrpexp 12153 If two numbers 𝐴 and 𝐡 are relatively prime, then they are still relatively prime if raised to a power. (Contributed by Mario Carneiro, 24-Feb-2014.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€ ∧ 𝑁 ∈ β„•) β†’ (((𝐴↑𝑁) gcd 𝐡) = 1 ↔ (𝐴 gcd 𝐡) = 1))
 
Theoremrpexp1i 12154 Relative primality passes to asymmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€ ∧ 𝑀 ∈ β„•0) β†’ ((𝐴 gcd 𝐡) = 1 β†’ ((𝐴↑𝑀) gcd 𝐡) = 1))
 
Theoremrpexp12i 12155 Relative primality passes to symmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€ ∧ (𝑀 ∈ β„•0 ∧ 𝑁 ∈ β„•0)) β†’ ((𝐴 gcd 𝐡) = 1 β†’ ((𝐴↑𝑀) gcd (𝐡↑𝑁)) = 1))
 
Theoremprmndvdsfaclt 12156 A prime number does not divide the factorial of a nonnegative integer less than the prime number. (Contributed by AV, 13-Jul-2021.)
((𝑃 ∈ β„™ ∧ 𝑁 ∈ β„•0) β†’ (𝑁 < 𝑃 β†’ Β¬ 𝑃 βˆ₯ (!β€˜π‘)))
 
Theoremcncongrprm 12157 Corollary 2 of Cancellability of Congruences: Two products with a common factor are congruent modulo a prime number not dividing the common factor iff the other factors are congruent modulo the prime number. (Contributed by AV, 13-Jul-2021.)
(((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€ ∧ 𝐢 ∈ β„€) ∧ (𝑃 ∈ β„™ ∧ Β¬ 𝑃 βˆ₯ 𝐢)) β†’ (((𝐴 Β· 𝐢) mod 𝑃) = ((𝐡 Β· 𝐢) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐡 mod 𝑃)))
 
Theoremisevengcd2 12158 The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) (Revised by AV, 8-Aug-2021.)
(𝑍 ∈ β„€ β†’ (2 βˆ₯ 𝑍 ↔ (2 gcd 𝑍) = 2))
 
Theoremisoddgcd1 12159 The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) (Revised by AV, 8-Aug-2021.)
(𝑍 ∈ β„€ β†’ (Β¬ 2 βˆ₯ 𝑍 ↔ (2 gcd 𝑍) = 1))
 
Theorem3lcm2e6 12160 The least common multiple of three and two is six. The operands are unequal primes and thus coprime, so the result is (the absolute value of) their product. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 27-Aug-2020.)
(3 lcm 2) = 6
 
5.2.3  Non-rationality of square root of 2
 
Theoremsqrt2irrlem 12161 Lemma for sqrt2irr 12162. This is the core of the proof: - if 𝐴 / 𝐡 = √(2), then 𝐴 and 𝐡 are even, so 𝐴 / 2 and 𝐡 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.)
(πœ‘ β†’ 𝐴 ∈ β„€)    &   (πœ‘ β†’ 𝐡 ∈ β„•)    &   (πœ‘ β†’ (βˆšβ€˜2) = (𝐴 / 𝐡))    β‡’   (πœ‘ β†’ ((𝐴 / 2) ∈ β„€ ∧ (𝐡 / 2) ∈ β„•))
 
Theoremsqrt2irr 12162 The square root of 2 is not rational. That is, for any rational number, (βˆšβ€˜2) does not equal it. However, if we were to say "the square root of 2 is irrational" that would mean something stronger: "for any rational number, (βˆšβ€˜2) is apart from it" (the two statements are equivalent given excluded middle). See sqrt2irrap 12180 for the proof that the square root of two is irrational.

The proof's core is proven in sqrt2irrlem 12161, which shows that if 𝐴 / 𝐡 = √(2), then 𝐴 and 𝐡 are even, so 𝐴 / 2 and 𝐡 / 2 are smaller representatives, which is absurd. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)

(βˆšβ€˜2) βˆ‰ β„š
 
Theoremsqrt2re 12163 The square root of 2 exists and is a real number. (Contributed by NM, 3-Dec-2004.)
(βˆšβ€˜2) ∈ ℝ
 
Theoremsqrt2irr0 12164 The square root of 2 is not rational. (Contributed by AV, 23-Dec-2022.)
(βˆšβ€˜2) ∈ (ℝ βˆ– β„š)
 
Theorempw2dvdslemn 12165* Lemma for pw2dvds 12166. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.)
((𝑁 ∈ β„• ∧ 𝐴 ∈ β„• ∧ Β¬ (2↑𝐴) βˆ₯ 𝑁) β†’ βˆƒπ‘š ∈ β„•0 ((2β†‘π‘š) βˆ₯ 𝑁 ∧ Β¬ (2↑(π‘š + 1)) βˆ₯ 𝑁))
 
Theorempw2dvds 12166* A natural number has a highest power of two which divides it. (Contributed by Jim Kingdon, 14-Nov-2021.)
(𝑁 ∈ β„• β†’ βˆƒπ‘š ∈ β„•0 ((2β†‘π‘š) βˆ₯ 𝑁 ∧ Β¬ (2↑(π‘š + 1)) βˆ₯ 𝑁))
 
Theorempw2dvdseulemle 12167 Lemma for pw2dvdseu 12168. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
(πœ‘ β†’ 𝑁 ∈ β„•)    &   (πœ‘ β†’ 𝐴 ∈ β„•0)    &   (πœ‘ β†’ 𝐡 ∈ β„•0)    &   (πœ‘ β†’ (2↑𝐴) βˆ₯ 𝑁)    &   (πœ‘ β†’ Β¬ (2↑(𝐡 + 1)) βˆ₯ 𝑁)    β‡’   (πœ‘ β†’ 𝐴 ≀ 𝐡)
 
Theorempw2dvdseu 12168* A natural number has a unique highest power of two which divides it. (Contributed by Jim Kingdon, 16-Nov-2021.)
(𝑁 ∈ β„• β†’ βˆƒ!π‘š ∈ β„•0 ((2β†‘π‘š) βˆ₯ 𝑁 ∧ Β¬ (2↑(π‘š + 1)) βˆ₯ 𝑁))
 
Theoremoddpwdclemxy 12169* Lemma for oddpwdc 12174. Another way of stating that decomposing a natural number into a power of two and an odd number is unique. (Contributed by Jim Kingdon, 16-Nov-2021.)
((((𝑋 ∈ β„• ∧ Β¬ 2 βˆ₯ 𝑋) ∧ π‘Œ ∈ β„•0) ∧ 𝐴 = ((2β†‘π‘Œ) Β· 𝑋)) β†’ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ β„•0 ((2↑𝑧) βˆ₯ 𝐴 ∧ Β¬ (2↑(𝑧 + 1)) βˆ₯ 𝐴)))) ∧ π‘Œ = (℩𝑧 ∈ β„•0 ((2↑𝑧) βˆ₯ 𝐴 ∧ Β¬ (2↑(𝑧 + 1)) βˆ₯ 𝐴))))
 
Theoremoddpwdclemdvds 12170* Lemma for oddpwdc 12174. A natural number is divisible by the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.)
(𝐴 ∈ β„• β†’ (2↑(℩𝑧 ∈ β„•0 ((2↑𝑧) βˆ₯ 𝐴 ∧ Β¬ (2↑(𝑧 + 1)) βˆ₯ 𝐴))) βˆ₯ 𝐴)
 
Theoremoddpwdclemndvds 12171* Lemma for oddpwdc 12174. A natural number is not divisible by one more than the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.)
(𝐴 ∈ β„• β†’ Β¬ (2↑((℩𝑧 ∈ β„•0 ((2↑𝑧) βˆ₯ 𝐴 ∧ Β¬ (2↑(𝑧 + 1)) βˆ₯ 𝐴)) + 1)) βˆ₯ 𝐴)
 
Theoremoddpwdclemodd 12172* Lemma for oddpwdc 12174. Removing the powers of two from a natural number produces an odd number. (Contributed by Jim Kingdon, 16-Nov-2021.)
(𝐴 ∈ β„• β†’ Β¬ 2 βˆ₯ (𝐴 / (2↑(℩𝑧 ∈ β„•0 ((2↑𝑧) βˆ₯ 𝐴 ∧ Β¬ (2↑(𝑧 + 1)) βˆ₯ 𝐴)))))
 
Theoremoddpwdclemdc 12173* Lemma for oddpwdc 12174. Decomposing a number into odd and even parts. (Contributed by Jim Kingdon, 16-Nov-2021.)
((((𝑋 ∈ β„• ∧ Β¬ 2 βˆ₯ 𝑋) ∧ π‘Œ ∈ β„•0) ∧ 𝐴 = ((2β†‘π‘Œ) Β· 𝑋)) ↔ (𝐴 ∈ β„• ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ β„•0 ((2↑𝑧) βˆ₯ 𝐴 ∧ Β¬ (2↑(𝑧 + 1)) βˆ₯ 𝐴)))) ∧ π‘Œ = (℩𝑧 ∈ β„•0 ((2↑𝑧) βˆ₯ 𝐴 ∧ Β¬ (2↑(𝑧 + 1)) βˆ₯ 𝐴)))))
 
Theoremoddpwdc 12174* The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.)
𝐽 = {𝑧 ∈ β„• ∣ Β¬ 2 βˆ₯ 𝑧}    &   πΉ = (π‘₯ ∈ 𝐽, 𝑦 ∈ β„•0 ↦ ((2↑𝑦) Β· π‘₯))    β‡’   πΉ:(𝐽 Γ— β„•0)–1-1-ontoβ†’β„•
 
Theoremsqpweven 12175* The greatest power of two dividing the square of an integer is an even power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
𝐽 = {𝑧 ∈ β„• ∣ Β¬ 2 βˆ₯ 𝑧}    &   πΉ = (π‘₯ ∈ 𝐽, 𝑦 ∈ β„•0 ↦ ((2↑𝑦) Β· π‘₯))    β‡’   (𝐴 ∈ β„• β†’ 2 βˆ₯ (2nd β€˜(β—‘πΉβ€˜(𝐴↑2))))
 
Theorem2sqpwodd 12176* The greatest power of two dividing twice the square of an integer is an odd power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
𝐽 = {𝑧 ∈ β„• ∣ Β¬ 2 βˆ₯ 𝑧}    &   πΉ = (π‘₯ ∈ 𝐽, 𝑦 ∈ β„•0 ↦ ((2↑𝑦) Β· π‘₯))    β‡’   (𝐴 ∈ β„• β†’ Β¬ 2 βˆ₯ (2nd β€˜(β—‘πΉβ€˜(2 Β· (𝐴↑2)))))
 
Theoremsqne2sq 12177 The square of a natural number can never be equal to two times the square of a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
((𝐴 ∈ β„• ∧ 𝐡 ∈ β„•) β†’ (𝐴↑2) β‰  (2 Β· (𝐡↑2)))
 
Theoremznege1 12178 The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€ ∧ 𝐴 β‰  𝐡) β†’ 1 ≀ (absβ€˜(𝐴 βˆ’ 𝐡)))
 
Theoremsqrt2irraplemnn 12179 Lemma for sqrt2irrap 12180. The square root of 2 is apart from a positive rational expressed as a numerator and denominator. (Contributed by Jim Kingdon, 2-Oct-2021.)
((𝐴 ∈ β„• ∧ 𝐡 ∈ β„•) β†’ (βˆšβ€˜2) # (𝐴 / 𝐡))
 
Theoremsqrt2irrap 12180 The square root of 2 is irrational. That is, for any rational number, (βˆšβ€˜2) is apart from it. In the absence of excluded middle, we can distinguish between this and "the square root of 2 is not rational" which is sqrt2irr 12162. (Contributed by Jim Kingdon, 2-Oct-2021.)
(𝑄 ∈ β„š β†’ (βˆšβ€˜2) # 𝑄)
 
5.2.4  Properties of the canonical representation of a rational
 
Syntaxcnumer 12181 Extend class notation to include canonical numerator function.
class numer
 
Syntaxcdenom 12182 Extend class notation to include canonical denominator function.
class denom
 
Definitiondf-numer 12183* The canonical numerator of a rational is the numerator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014.)
numer = (𝑦 ∈ β„š ↦ (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝑦 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
 
Definitiondf-denom 12184* The canonical denominator of a rational is the denominator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014.)
denom = (𝑦 ∈ β„š ↦ (2nd β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝑦 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
 
Theoremqnumval 12185* Value of the canonical numerator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ β„š β†’ (numerβ€˜π΄) = (1st β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
 
Theoremqdenval 12186* Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ β„š β†’ (denomβ€˜π΄) = (2nd β€˜(β„©π‘₯ ∈ (β„€ Γ— β„•)(((1st β€˜π‘₯) gcd (2nd β€˜π‘₯)) = 1 ∧ 𝐴 = ((1st β€˜π‘₯) / (2nd β€˜π‘₯))))))
 
Theoremqnumdencl 12187 Lemma for qnumcl 12188 and qdencl 12189. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ β„š β†’ ((numerβ€˜π΄) ∈ β„€ ∧ (denomβ€˜π΄) ∈ β„•))
 
Theoremqnumcl 12188 The canonical numerator of a rational is an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ β„š β†’ (numerβ€˜π΄) ∈ β„€)
 
Theoremqdencl 12189 The canonical denominator is a positive integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ β„š β†’ (denomβ€˜π΄) ∈ β„•)
 
Theoremfnum 12190 Canonical numerator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
numer:β„šβŸΆβ„€
 
Theoremfden 12191 Canonical denominator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
denom:β„šβŸΆβ„•
 
Theoremqnumdenbi 12192 Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014.)
((𝐴 ∈ β„š ∧ 𝐡 ∈ β„€ ∧ 𝐢 ∈ β„•) β†’ (((𝐡 gcd 𝐢) = 1 ∧ 𝐴 = (𝐡 / 𝐢)) ↔ ((numerβ€˜π΄) = 𝐡 ∧ (denomβ€˜π΄) = 𝐢)))
 
Theoremqnumdencoprm 12193 The canonical representation of a rational is fully reduced. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ β„š β†’ ((numerβ€˜π΄) gcd (denomβ€˜π΄)) = 1)
 
Theoremqeqnumdivden 12194 Recover a rational number from its canonical representation. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ β„š β†’ 𝐴 = ((numerβ€˜π΄) / (denomβ€˜π΄)))
 
Theoremqmuldeneqnum 12195 Multiplying a rational by its denominator results in an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ β„š β†’ (𝐴 Β· (denomβ€˜π΄)) = (numerβ€˜π΄))
 
Theoremdivnumden 12196 Calculate the reduced form of a quotient using gcd. (Contributed by Stefan O'Rear, 13-Sep-2014.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„•) β†’ ((numerβ€˜(𝐴 / 𝐡)) = (𝐴 / (𝐴 gcd 𝐡)) ∧ (denomβ€˜(𝐴 / 𝐡)) = (𝐡 / (𝐴 gcd 𝐡))))
 
Theoremdivdenle 12197 Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„•) β†’ (denomβ€˜(𝐴 / 𝐡)) ≀ 𝐡)
 
Theoremqnumgt0 12198 A rational is positive iff its canonical numerator is. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(𝐴 ∈ β„š β†’ (0 < 𝐴 ↔ 0 < (numerβ€˜π΄)))
 
Theoremqgt0numnn 12199 A rational is positive iff its canonical numerator is a positive integer. (Contributed by Stefan O'Rear, 15-Sep-2014.)
((𝐴 ∈ β„š ∧ 0 < 𝐴) β†’ (numerβ€˜π΄) ∈ β„•)
 
Theoremnn0gcdsq 12200 Squaring commutes with GCD, in particular two coprime numbers have coprime squares. (Contributed by Stefan O'Rear, 15-Sep-2014.)
((𝐴 ∈ β„•0 ∧ 𝐡 ∈ β„•0) β†’ ((𝐴 gcd 𝐡)↑2) = ((𝐴↑2) gcd (𝐡↑2)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14834
  Copyright terms: Public domain < Previous  Next >