HomeHome Intuitionistic Logic Explorer
Theorem List (p. 122 of 161)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12101-12200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaddcos 12101 Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) + (cos‘𝐵)) = (2 · ((cos‘((𝐴 + 𝐵) / 2)) · (cos‘((𝐴𝐵) / 2)))))
 
Theoremsubcos 12102 Difference of cosines. (Contributed by Paul Chapman, 12-Oct-2007.) (Revised by Mario Carneiro, 10-May-2014.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) − (cos‘𝐴)) = (2 · ((sin‘((𝐴 + 𝐵) / 2)) · (sin‘((𝐴𝐵) / 2)))))
 
Theoremsincossq 12103 Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.)
(𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
 
Theoremsin2t 12104 Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008.)
(𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴))))
 
Theoremcos2t 12105 Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.)
(𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1))
 
Theoremcos2tsin 12106 Double-angle formula for cosine in terms of sine. (Contributed by NM, 12-Sep-2008.)
(𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (1 − (2 · ((sin‘𝐴)↑2))))
 
Theoremsinbnd 12107 The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.)
(𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1))
 
Theoremcosbnd 12108 The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.)
(𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
 
Theoremsinbnd2 12109 The sine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.)
(𝐴 ∈ ℝ → (sin‘𝐴) ∈ (-1[,]1))
 
Theoremcosbnd2 12110 The cosine of a real number is in the closed interval from -1 to 1. (Contributed by Mario Carneiro, 12-May-2014.)
(𝐴 ∈ ℝ → (cos‘𝐴) ∈ (-1[,]1))
 
Theoremef01bndlem 12111* Lemma for sin01bnd 12112 and cos01bnd 12113. (Contributed by Paul Chapman, 19-Jan-2008.)
𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))       (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) < ((𝐴↑4) / 6))
 
Theoremsin01bnd 12112 Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
(𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴))
 
Theoremcos01bnd 12113 Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
(𝐴 ∈ (0(,]1) → ((1 − (2 · ((𝐴↑2) / 3))) < (cos‘𝐴) ∧ (cos‘𝐴) < (1 − ((𝐴↑2) / 3))))
 
Theoremcos1bnd 12114 Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.)
((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3))
 
Theoremcos2bnd 12115 Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.)
(-(7 / 9) < (cos‘2) ∧ (cos‘2) < -(1 / 9))
 
Theoremsinltxirr 12116* The sine of a positive irrational number is less than its argument. Here irrational means apart from any rational number. (Contributed by Mario Carneiro, 29-Jul-2014.)
((𝐴 ∈ ℝ+ ∧ ∀𝑞 ∈ ℚ 𝐴 # 𝑞) → (sin‘𝐴) < 𝐴)
 
Theoremsin01gt0 12117 The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Wolf Lammen, 25-Sep-2020.)
(𝐴 ∈ (0(,]1) → 0 < (sin‘𝐴))
 
Theoremcos01gt0 12118 The cosine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
(𝐴 ∈ (0(,]1) → 0 < (cos‘𝐴))
 
Theoremsin02gt0 12119 The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
(𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴))
 
Theoremsincos1sgn 12120 The signs of the sine and cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.)
(0 < (sin‘1) ∧ 0 < (cos‘1))
 
Theoremsincos2sgn 12121 The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.)
(0 < (sin‘2) ∧ (cos‘2) < 0)
 
Theoremsin4lt0 12122 The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.)
(sin‘4) < 0
 
Theoremcos12dec 12123 Cosine is decreasing from one to two. (Contributed by Mario Carneiro and Jim Kingdon, 6-Mar-2024.)
((𝐴 ∈ (1[,]2) ∧ 𝐵 ∈ (1[,]2) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴))
 
Theoremabsefi 12124 The absolute value of the exponential of an imaginary number is one. Equation 48 of [Rudin] p. 167. (Contributed by Jason Orendorff, 9-Feb-2007.)
(𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1)
 
Theoremabsef 12125 The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.)
(𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴)))
 
Theoremabsefib 12126 A complex number is real iff the exponential of its product with i has absolute value one. (Contributed by NM, 21-Aug-2008.)
(𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1))
 
Theoremefieq1re 12127 A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.)
((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ)
 
Theoremdemoivre 12128 De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 12129 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
 
TheoremdemoivreALT 12129 Alternate proof of demoivre 12128. It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
 
4.10.1.1  The circle constant (tau = 2 pi)
 
Syntaxctau 12130 Extend class notation to include the constant tau, τ = 6.28318....
class τ
 
Definitiondf-tau 12131 Define the circle constant tau, τ = 6.28318..., which is the smallest positive real number whose cosine is one. Various notations have been used or proposed for this number including τ, a three-legged variant of π, or . Note the difference between this constant τ and the formula variable 𝜏. Following our convention, the constant is displayed in upright font while the variable is in italic font; furthermore, the colors are different. (Contributed by Jim Kingdon, 9-Apr-2018.) (Revised by AV, 1-Oct-2020.)
τ = inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
 
4.10.2  _e is irrational
 
Theoremeirraplem 12132* Lemma for eirrap 12133. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 5-Jan-2022.)
𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))    &   (𝜑𝑃 ∈ ℤ)    &   (𝜑𝑄 ∈ ℕ)       (𝜑 → e # (𝑃 / 𝑄))
 
Theoremeirrap 12133 e is irrational. That is, for any rational number, e is apart from it. In the absence of excluded middle, we can distinguish between this and saying that e is not rational, which is eirr 12134. (Contributed by Jim Kingdon, 6-Jan-2023.)
(𝑄 ∈ ℚ → e # 𝑄)
 
Theoremeirr 12134 e is not rational. In the absence of excluded middle, we can distinguish between this and saying that e is irrational in the sense of being apart from any rational number, which is eirrap 12133. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 6-Jan-2023.)
e ∉ ℚ
 
Theoremegt2lt3 12135 Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 28-Nov-2008.) (Revised by Jim Kingdon, 7-Jan-2023.)
(2 < e ∧ e < 3)
 
Theoremepos 12136 Euler's constant e is greater than 0. (Contributed by Jeff Hankins, 22-Nov-2008.)
0 < e
 
Theoremepr 12137 Euler's constant e is a positive real. (Contributed by Jeff Hankins, 22-Nov-2008.)
e ∈ ℝ+
 
Theoremene0 12138 e is not 0. (Contributed by David A. Wheeler, 17-Oct-2017.)
e ≠ 0
 
Theoremeap0 12139 e is apart from 0. (Contributed by Jim Kingdon, 7-Jan-2023.)
e # 0
 
Theoremene1 12140 e is not 1. (Contributed by David A. Wheeler, 17-Oct-2017.)
e ≠ 1
 
Theoremeap1 12141 e is apart from 1. (Contributed by Jim Kingdon, 7-Jan-2023.)
e # 1
 
PART 5  ELEMENTARY NUMBER THEORY

This part introduces elementary number theory, in particular the elementary properties of divisibility and elementary prime number theory.

 
5.1  Elementary properties of divisibility
 
5.1.1  The divides relation
 
Syntaxcdvds 12142 Extend the definition of a class to include the divides relation. See df-dvds 12143.
class
 
Definitiondf-dvds 12143* Define the divides relation, see definition in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}
 
Theoremdivides 12144* Define the divides relation. 𝑀𝑁 means 𝑀 divides into 𝑁 with no remainder. For example, 3 ∥ 6 (ex-dvds 15740). As proven in dvdsval3 12146, 𝑀𝑁 ↔ (𝑁 mod 𝑀) = 0. See divides 12144 and dvdsval2 12145 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 𝑀) = 𝑁))
 
Theoremdvdsval2 12145 One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.)
((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
 
Theoremdvdsval3 12146 One nonzero integer divides another integer if and only if the remainder upon division is zero, see remark in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 15-Jul-2014.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑁 mod 𝑀) = 0))
 
Theoremdvdszrcl 12147 Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
(𝑋𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
 
Theoremdvdsmod0 12148 If a positive integer divides another integer, then the remainder upon division is zero. (Contributed by AV, 3-Mar-2022.)
((𝑀 ∈ ℕ ∧ 𝑀𝑁) → (𝑁 mod 𝑀) = 0)
 
Theoremp1modz1 12149 If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.)
((𝑀𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1)
 
Theoremdvdsmodexp 12150 If a positive integer divides another integer, this other integer is equal to its positive powers modulo the positive integer. (Formerly part of the proof for fermltl 12600). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by AV, 19-Mar-2022.)
((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁𝐴) → ((𝐴𝐵) mod 𝑁) = (𝐴 mod 𝑁))
 
Theoremnndivdvds 12151 Strong form of dvdsval2 12145 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ))
 
Theoremnndivides 12152* Definition of the divides relation for positive integers. (Contributed by AV, 26-Jul-2021.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁 ↔ ∃𝑛 ∈ ℕ (𝑛 · 𝑀) = 𝑁))
 
Theoremdvdsdc 12153 Divisibility is decidable. (Contributed by Jim Kingdon, 14-Nov-2021.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
 
Theoremmoddvds 12154 Two ways to say 𝐴𝐵 (mod 𝑁), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑁) = (𝐵 mod 𝑁) ↔ 𝑁 ∥ (𝐴𝐵)))
 
Theoremmodm1div 12155 An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023.)
((𝑁 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑁) = 1 ↔ 𝑁 ∥ (𝐴 − 1)))
 
Theoremdvds0lem 12156 A lemma to assist theorems of with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀𝑁)
 
Theoremdvds1lem 12157* A lemma to assist theorems of with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ))    &   (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))    &   ((𝜑𝑥 ∈ ℤ) → 𝑍 ∈ ℤ)    &   ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁))       (𝜑 → (𝐽𝐾𝑀𝑁))
 
Theoremdvds2lem 12158* A lemma to assist theorems of with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ))    &   (𝜑 → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ))    &   (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))    &   ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑍 ∈ ℤ)    &   ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → (𝑍 · 𝑀) = 𝑁))       (𝜑 → ((𝐼𝐽𝐾𝐿) → 𝑀𝑁))
 
Theoremiddvds 12159 An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
(𝑁 ∈ ℤ → 𝑁𝑁)
 
Theorem1dvds 12160 1 divides any integer. Theorem 1.1(f) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝑁 ∈ ℤ → 1 ∥ 𝑁)
 
Theoremdvds0 12161 Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝑁 ∈ ℤ → 𝑁 ∥ 0)
 
Theoremnegdvdsb 12162 An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ -𝑀𝑁))
 
Theoremdvdsnegb 12163 An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ -𝑁))
 
Theoremabsdvdsb 12164 An integer divides another iff its absolute value does. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
 
Theoremdvdsabsb 12165 An integer divides another iff it divides its absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ (abs‘𝑁)))
 
Theorem0dvds 12166 Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
(𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
 
Theoremzdvdsdc 12167 Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀𝑁)
 
Theoremdvdsmul1 12168 An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 · 𝑁))
 
Theoremdvdsmul2 12169 An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 · 𝑁))
 
Theoremiddvdsexp 12170 An integer divides a positive integer power of itself. (Contributed by Paul Chapman, 26-Oct-2012.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∥ (𝑀𝑁))
 
Theoremmuldvds1 12171 If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁𝐾𝑁))
 
Theoremmuldvds2 12172 If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁𝑀𝑁))
 
Theoremdvdscmul 12173 Multiplication by a constant maintains the divides relation. Theorem 1.1(d) in [ApostolNT] p. 14 (multiplication property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁)))
 
Theoremdvdsmulc 12174 Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾)))
 
Theoremdvdscmulr 12175 Cancellation law for the divides relation. Theorem 1.1(e) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) ↔ 𝑀𝑁))
 
Theoremdvdsmulcr 12176 Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀 · 𝐾) ∥ (𝑁 · 𝐾) ↔ 𝑀𝑁))
 
Theoremsummodnegmod 12177 The sum of two integers modulo a positive integer equals zero iff the first of the two integers equals the negative of the other integer modulo the positive integer. (Contributed by AV, 25-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 𝐵) mod 𝑁) = 0 ↔ (𝐴 mod 𝑁) = (-𝐵 mod 𝑁)))
 
Theoremmodmulconst 12178 Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀))))
 
Theoremdvds2ln 12179 If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁))))
 
Theoremdvds2add 12180 If an integer divides each of two other integers, it divides their sum. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ (𝑀 + 𝑁)))
 
Theoremdvds2sub 12181 If an integer divides each of two other integers, it divides their difference. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ (𝑀𝑁)))
 
Theoremdvds2subd 12182 Deduction form of dvds2sub 12181. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾𝑀)    &   (𝜑𝐾𝑁)       (𝜑𝐾 ∥ (𝑀𝑁))
 
Theoremdvdstr 12183 The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝑀𝑁) → 𝐾𝑁))
 
Theoremdvds2addd 12184 Deduction form of dvds2add 12180. (Contributed by SN, 21-Aug-2024.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾𝑀)    &   (𝜑𝐾𝑁)       (𝜑𝐾 ∥ (𝑀 + 𝑁))
 
Theoremdvdstrd 12185 The divides relation is transitive, a deduction version of dvdstr 12183. (Contributed by metakunt, 12-May-2024.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾𝑀)    &   (𝜑𝑀𝑁)       (𝜑𝐾𝑁)
 
Theoremdvdsmultr1 12186 If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑀𝐾 ∥ (𝑀 · 𝑁)))
 
Theoremdvdsmultr1d 12187 Natural deduction form of dvdsmultr1 12186. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾𝑀)       (𝜑𝐾 ∥ (𝑀 · 𝑁))
 
Theoremdvdsmultr2 12188 If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁𝐾 ∥ (𝑀 · 𝑁)))
 
Theoremordvdsmul 12189 If an integer divides either of two others, it divides their product. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ (𝑀 · 𝑁)))
 
Theoremdvdssub2 12190 If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.)
(((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀𝑁)) → (𝐾𝑀𝐾𝑁))
 
Theoremdvdsadd 12191 An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 13-Jul-2014.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ (𝑀 + 𝑁)))
 
Theoremdvdsaddr 12192 An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ (𝑁 + 𝑀)))
 
Theoremdvdssub 12193 An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ (𝑀𝑁)))
 
Theoremdvdssubr 12194 An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ (𝑁𝑀)))
 
Theoremdvdsadd2b 12195 Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
 
Theoremdvdsaddre2b 12196 Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 12195 only requiring 𝐵 to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴𝐶)) → (𝐴𝐵𝐴 ∥ (𝐶 + 𝐵)))
 
Theoremfsumdvds 12197* If every term in a sum is divisible by 𝑁, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)    &   ((𝜑𝑘𝐴) → 𝑁𝐵)       (𝜑𝑁 ∥ Σ𝑘𝐴 𝐵)
 
Theoremdvdslelemd 12198 Lemma for dvdsle 12199. (Contributed by Jim Kingdon, 8-Nov-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝐾 ∈ ℤ)    &   (𝜑𝑁 < 𝑀)       (𝜑 → (𝐾 · 𝑀) ≠ 𝑁)
 
Theoremdvdsle 12199 The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀𝑁𝑀𝑁))
 
Theoremdvdsleabs 12200 The divisors of a nonzero integer are bounded by its absolute value. Theorem 1.1(i) in [ApostolNT] p. 14 (comparison property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀𝑁𝑀 ≤ (abs‘𝑁)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16097
  Copyright terms: Public domain < Previous  Next >