HomeHome Intuitionistic Logic Explorer
Theorem List (p. 122 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12101-12200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremoddpwdclemdc 12101* Lemma for oddpwdc 12102. Decomposing a number into odd and even parts. (Contributed by Jim Kingdon, 16-Nov-2021.)
((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) ↔ (𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))
 
Theoremoddpwdc 12102* The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.)
𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))       𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
 
Theoremsqpweven 12103* The greatest power of two dividing the square of an integer is an even power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))       (𝐴 ∈ ℕ → 2 ∥ (2nd ‘(𝐹‘(𝐴↑2))))
 
Theorem2sqpwodd 12104* The greatest power of two dividing twice the square of an integer is an odd power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}    &   𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))       (𝐴 ∈ ℕ → ¬ 2 ∥ (2nd ‘(𝐹‘(2 · (𝐴↑2)))))
 
Theoremsqne2sq 12105 The square of a natural number can never be equal to two times the square of a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2)))
 
Theoremznege1 12106 The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵) → 1 ≤ (abs‘(𝐴𝐵)))
 
Theoremsqrt2irraplemnn 12107 Lemma for sqrt2irrap 12108. The square root of 2 is apart from a positive rational expressed as a numerator and denominator. (Contributed by Jim Kingdon, 2-Oct-2021.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵))
 
Theoremsqrt2irrap 12108 The square root of 2 is irrational. That is, for any rational number, (√‘2) is apart from it. In the absence of excluded middle, we can distinguish between this and "the square root of 2 is not rational" which is sqrt2irr 12090. (Contributed by Jim Kingdon, 2-Oct-2021.)
(𝑄 ∈ ℚ → (√‘2) # 𝑄)
 
5.2.4  Properties of the canonical representation of a rational
 
Syntaxcnumer 12109 Extend class notation to include canonical numerator function.
class numer
 
Syntaxcdenom 12110 Extend class notation to include canonical denominator function.
class denom
 
Definitiondf-numer 12111* The canonical numerator of a rational is the numerator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014.)
numer = (𝑦 ∈ ℚ ↦ (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑦 = ((1st𝑥) / (2nd𝑥))))))
 
Definitiondf-denom 12112* The canonical denominator of a rational is the denominator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014.)
denom = (𝑦 ∈ ℚ ↦ (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑦 = ((1st𝑥) / (2nd𝑥))))))
 
Theoremqnumval 12113* Value of the canonical numerator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
 
Theoremqdenval 12114* Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))))
 
Theoremqnumdencl 12115 Lemma for qnumcl 12116 and qdencl 12117. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ))
 
Theoremqnumcl 12116 The canonical numerator of a rational is an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ)
 
Theoremqdencl 12117 The canonical denominator is a positive integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ)
 
Theoremfnum 12118 Canonical numerator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
numer:ℚ⟶ℤ
 
Theoremfden 12119 Canonical denominator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
denom:ℚ⟶ℕ
 
Theoremqnumdenbi 12120 Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014.)
((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝐵 gcd 𝐶) = 1 ∧ 𝐴 = (𝐵 / 𝐶)) ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶)))
 
Theoremqnumdencoprm 12121 The canonical representation of a rational is fully reduced. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1)
 
Theoremqeqnumdivden 12122 Recover a rational number from its canonical representation. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴)))
 
Theoremqmuldeneqnum 12123 Multiplying a rational by its denominator results in an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ ℚ → (𝐴 · (denom‘𝐴)) = (numer‘𝐴))
 
Theoremdivnumden 12124 Calculate the reduced form of a quotient using gcd. (Contributed by Stefan O'Rear, 13-Sep-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵))))
 
Theoremdivdenle 12125 Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵)
 
Theoremqnumgt0 12126 A rational is positive iff its canonical numerator is. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(𝐴 ∈ ℚ → (0 < 𝐴 ↔ 0 < (numer‘𝐴)))
 
Theoremqgt0numnn 12127 A rational is positive iff its canonical numerator is a positive integer. (Contributed by Stefan O'Rear, 15-Sep-2014.)
((𝐴 ∈ ℚ ∧ 0 < 𝐴) → (numer‘𝐴) ∈ ℕ)
 
Theoremnn0gcdsq 12128 Squaring commutes with GCD, in particular two coprime numbers have coprime squares. (Contributed by Stefan O'Rear, 15-Sep-2014.)
((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))
 
Theoremzgcdsq 12129 nn0gcdsq 12128 extended to integers by symmetry. (Contributed by Stefan O'Rear, 15-Sep-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2)))
 
Theoremnumdensq 12130 Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))
 
Theoremnumsq 12131 Square commutes with canonical numerator. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(𝐴 ∈ ℚ → (numer‘(𝐴↑2)) = ((numer‘𝐴)↑2))
 
Theoremdensq 12132 Square commutes with canonical denominator. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(𝐴 ∈ ℚ → (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))
 
Theoremqden1elz 12133 A rational is an integer iff it has denominator 1. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ))
 
Theoremnn0sqrtelqelz 12134 If a nonnegative integer has a rational square root, that root must be an integer. (Contributed by Jim Kingdon, 24-May-2022.)
((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ)
 
Theoremnonsq 12135 Any integer strictly between two adjacent squares has a non-rational square root. (Contributed by Stefan O'Rear, 15-Sep-2014.)
(((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ)
 
5.2.5  Euler's theorem
 
Syntaxcodz 12136 Extend class notation with the order function on the class of integers modulo N.
class od
 
Syntaxcphi 12137 Extend class notation with the Euler phi function.
class ϕ
 
Definitiondf-odz 12138* Define the order function on the class of integers modulo N. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.)
od = (𝑛 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} ↦ inf({𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥𝑚) − 1)}, ℝ, < )))
 
Definitiondf-phi 12139* Define the Euler phi function (also called "Euler totient function"), which counts the number of integers less than 𝑛 and coprime to it, see definition in [ApostolNT] p. 25. (Contributed by Mario Carneiro, 23-Feb-2014.)
ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1}))
 
Theoremphivalfi 12140* Finiteness of an expression used to define the Euler ϕ function. (Contributed by Jim Kingon, 28-May-2022.)
(𝑁 ∈ ℕ → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin)
 
Theoremphival 12141* Value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.)
(𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
 
Theoremphicl2 12142 Bounds and closure for the value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.)
(𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ (1...𝑁))
 
Theoremphicl 12143 Closure for the value of the Euler ϕ function. (Contributed by Mario Carneiro, 28-Feb-2014.)
(𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ)
 
Theoremphibndlem 12144* Lemma for phibnd 12145. (Contributed by Mario Carneiro, 23-Feb-2014.)
(𝑁 ∈ (ℤ‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1)))
 
Theoremphibnd 12145 A slightly tighter bound on the value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.)
(𝑁 ∈ (ℤ‘2) → (ϕ‘𝑁) ≤ (𝑁 − 1))
 
Theoremphicld 12146 Closure for the value of the Euler ϕ function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝑁 ∈ ℕ)       (𝜑 → (ϕ‘𝑁) ∈ ℕ)
 
Theoremphi1 12147 Value of the Euler ϕ function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.)
(ϕ‘1) = 1
 
Theoremdfphi2 12148* Alternate definition of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 2-May-2016.)
(𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
 
Theoremhashdvds 12149* The number of numbers in a given residue class in a finite set of integers. (Contributed by Mario Carneiro, 12-Mar-2014.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
(𝜑𝑁 ∈ ℕ)    &   (𝜑𝐴 ∈ ℤ)    &   (𝜑𝐵 ∈ (ℤ‘(𝐴 − 1)))    &   (𝜑𝐶 ∈ ℤ)       (𝜑 → (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) = ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
 
Theoremphiprmpw 12150 Value of the Euler ϕ function at a prime power. Theorem 2.5(a) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.)
((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1)))
 
Theoremphiprm 12151 Value of the Euler ϕ function at a prime. (Contributed by Mario Carneiro, 28-Feb-2014.)
(𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
 
Theoremcrth 12152* The Chinese Remainder Theorem: the function that maps 𝑥 to its remainder classes mod 𝑀 and mod 𝑁 is 1-1 and onto when 𝑀 and 𝑁 are coprime. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-May-2016.)
𝑆 = (0..^(𝑀 · 𝑁))    &   𝑇 = ((0..^𝑀) × (0..^𝑁))    &   𝐹 = (𝑥𝑆 ↦ ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩)    &   (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1))       (𝜑𝐹:𝑆1-1-onto𝑇)
 
Theoremphimullem 12153* Lemma for phimul 12154. (Contributed by Mario Carneiro, 24-Feb-2014.)
𝑆 = (0..^(𝑀 · 𝑁))    &   𝑇 = ((0..^𝑀) × (0..^𝑁))    &   𝐹 = (𝑥𝑆 ↦ ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩)    &   (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1))    &   𝑈 = {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1}    &   𝑉 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}    &   𝑊 = {𝑦𝑆 ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1}       (𝜑 → (ϕ‘(𝑀 · 𝑁)) = ((ϕ‘𝑀) · (ϕ‘𝑁)))
 
Theoremphimul 12154 The Euler ϕ function is a multiplicative function, meaning that it distributes over multiplication at relatively prime arguments. Theorem 2.5(c) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (ϕ‘(𝑀 · 𝑁)) = ((ϕ‘𝑀) · (ϕ‘𝑁)))
 
Theoremeulerthlem1 12155* Lemma for eulerth 12161. (Contributed by Mario Carneiro, 8-May-2015.)
(𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))    &   𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}    &   𝑇 = (1...(ϕ‘𝑁))    &   (𝜑𝐹:𝑇1-1-onto𝑆)    &   𝐺 = (𝑥𝑇 ↦ ((𝐴 · (𝐹𝑥)) mod 𝑁))       (𝜑𝐺:𝑇𝑆)
 
Theoremeulerthlemfi 12156* Lemma for eulerth 12161. The set 𝑆 is finite. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.)
(𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))    &   𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}       (𝜑𝑆 ∈ Fin)
 
Theoremeulerthlemrprm 12157* Lemma for eulerth 12161. 𝑁 and 𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥) are relatively prime. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
(𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))    &   𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}    &   (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)       (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) = 1)
 
Theoremeulerthlema 12158* Lemma for eulerth 12161. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
(𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))    &   𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}    &   (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)       (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹𝑥)) mod 𝑁) mod 𝑁))
 
Theoremeulerthlemh 12159* Lemma for eulerth 12161. A permutation of (1...(ϕ‘𝑁)). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 5-Sep-2024.)
(𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))    &   𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}    &   (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)    &   𝐻 = (𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹𝑦)) mod 𝑁)))       (𝜑𝐻:(1...(ϕ‘𝑁))–1-1-onto→(1...(ϕ‘𝑁)))
 
Theoremeulerthlemth 12160* Lemma for eulerth 12161. The result. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.)
(𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))    &   𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}    &   (𝜑𝐹:(1...(ϕ‘𝑁))–1-1-onto𝑆)       (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
 
Theoremeulerth 12161 Euler's theorem, a generalization of Fermat's little theorem. If 𝐴 and 𝑁 are coprime, then 𝐴↑ϕ(𝑁)≡1 (mod 𝑁). This is Metamath 100 proof #10. Also called Euler-Fermat theorem, see theorem 5.17 in [ApostolNT] p. 113. (Contributed by Mario Carneiro, 28-Feb-2014.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
 
Theoremfermltl 12162 Fermat's little theorem. When 𝑃 is prime, 𝐴𝑃𝐴 (mod 𝑃) for any 𝐴, see theorem 5.19 in [ApostolNT] p. 114. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 19-Mar-2022.)
((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴𝑃) mod 𝑃) = (𝐴 mod 𝑃))
 
Theoremprmdiv 12163 Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. (Contributed by Mario Carneiro, 24-Jan-2015.)
𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)       ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
 
Theoremprmdiveq 12164 The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by Mario Carneiro, 24-Jan-2015.)
𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)       ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅))
 
Theoremprmdivdiv 12165 The (modular) inverse of the inverse of a number is itself. (Contributed by Mario Carneiro, 24-Jan-2015.)
𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)       ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃))
 
Theoremhashgcdlem 12166* A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}    &   𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁}    &   𝐹 = (𝑥𝐴 ↦ (𝑥 · 𝑁))       ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝐹:𝐴1-1-onto𝐵)
 
Theoremhashgcdeq 12167* Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0))
 
Theoremphisum 12168* The divisor sum identity of the totient function. Theorem 2.2 in [ApostolNT] p. 26. (Contributed by Stefan O'Rear, 12-Sep-2015.)
(𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = 𝑁)
 
Theoremodzval 12169* Value of the order function. This is a function of functions; the inner argument selects the base (i.e., mod 𝑁 for some 𝑁, often prime) and the outer argument selects the integer or equivalence class (if you want to think about it that way) from the integers mod 𝑁. In order to ensure the supremum is well-defined, we only define the expression when 𝐴 and 𝑁 are coprime. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴𝑛) − 1)}, ℝ, < ))
 
Theoremodzcllem 12170 - Lemma for odzcl 12171, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((od𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1)))
 
Theoremodzcl 12171 The order of a group element is an integer. (Contributed by Mario Carneiro, 28-Feb-2014.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) ∈ ℕ)
 
Theoremodzid 12172 Any element raised to the power of its order is 1. (Contributed by Mario Carneiro, 28-Feb-2014.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑((od𝑁)‘𝐴)) − 1))
 
Theoremodzdvds 12173 The only powers of 𝐴 that are congruent to 1 are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.)
(((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴𝐾) − 1) ↔ ((od𝑁)‘𝐴) ∥ 𝐾))
 
Theoremodzphi 12174 The order of any group element is a divisor of the Euler ϕ function. (Contributed by Mario Carneiro, 28-Feb-2014.)
((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((od𝑁)‘𝐴) ∥ (ϕ‘𝑁))
 
5.2.6  Arithmetic modulo a prime number
 
Theoremmodprm1div 12175 A prime number divides an integer minus 1 iff the integer modulo the prime number is 1. (Contributed by Alexander van der Vekens, 17-May-2018.) (Proof shortened by AV, 30-May-2023.)
((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑃) = 1 ↔ 𝑃 ∥ (𝐴 − 1)))
 
Theoremm1dvdsndvds 12176 If an integer minus 1 is divisible by a prime number, the integer itself is not divisible by this prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ¬ 𝑃𝐴))
 
Theoremmodprminv 12177 Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. This is an application of prmdiv 12163. (Contributed by Alexander van der Vekens, 15-May-2018.)
𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)       ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · 𝑅) mod 𝑃) = 1))
 
Theoremmodprminveq 12178 The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by Alexander van der Vekens, 17-May-2018.)
𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)       ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ ((𝐴 · 𝑆) mod 𝑃) = 1) ↔ 𝑆 = 𝑅))
 
Theoremvfermltl 12179 Variant of Fermat's little theorem if 𝐴 is not a multiple of 𝑃, see theorem 5.18 in [ApostolNT] p. 113. (Contributed by AV, 21-Aug-2020.) (Proof shortened by AV, 5-Sep-2020.)
((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1)
 
Theorempowm2modprm 12180 If an integer minus 1 is divisible by a prime number, then the integer to the power of the prime number minus 2 is 1 modulo the prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1))
 
Theoremreumodprminv 12181* For any prime number and for any positive integer less than this prime number, there is a unique modular inverse of this positive integer. (Contributed by Alexander van der Vekens, 12-May-2018.)
((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1)
 
Theoremmodprm0 12182* For two positive integers less than a given prime number there is always a nonnegative integer (less than the given prime number) so that the sum of one of the two positive integers and the other of the positive integers multiplied by the nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 17-May-2018.)
((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
 
Theoremnnnn0modprm0 12183* For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.)
((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)
 
Theoremmodprmn0modprm0 12184* For an integer not being 0 modulo a given prime number and a nonnegative integer less than the prime number, there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 10-Nov-2018.)
((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0))
 
5.2.7  Pythagorean Triples
 
Theoremcoprimeprodsq 12185 If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2)))
 
Theoremcoprimeprodsq2 12186 If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2)))
 
Theoremoddprm 12187 A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.)
(𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ)
 
Theoremnnoddn2prm 12188 A prime not equal to 2 is an odd positive integer. (Contributed by AV, 28-Jun-2021.)
(𝑁 ∈ (ℙ ∖ {2}) → (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁))
 
Theoremoddn2prm 12189 A prime not equal to 2 is odd. (Contributed by AV, 28-Jun-2021.)
(𝑁 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑁)
 
Theoremnnoddn2prmb 12190 A number is a prime number not equal to 2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021.)
(𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁))
 
Theoremprm23lt5 12191 A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021.)
((𝑃 ∈ ℙ ∧ 𝑃 < 5) → (𝑃 = 2 ∨ 𝑃 = 3))
 
Theoremprm23ge5 12192 A prime is either 2 or 3 or greater than or equal to 5. (Contributed by AV, 5-Jul-2021.)
(𝑃 ∈ ℙ → (𝑃 = 2 ∨ 𝑃 = 3 ∨ 𝑃 ∈ (ℤ‘5)))
 
Theorempythagtriplem1 12193* Lemma for pythagtrip 12211. Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
 
Theorempythagtriplem2 12194* Lemma for pythagtrip 12211. Prove the full version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
 
Theorempythagtriplem3 12195 Lemma for pythagtrip 12211. Show that 𝐶 and 𝐵 are relatively prime under some conditions. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐵 gcd 𝐶) = 1)
 
Theorempythagtriplem4 12196 Lemma for pythagtrip 12211. Show that 𝐶𝐵 and 𝐶 + 𝐵 are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) gcd (𝐶 + 𝐵)) = 1)
 
Theorempythagtriplem10 12197 Lemma for pythagtrip 12211. Show that 𝐶𝐵 is positive. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶𝐵))
 
Theorempythagtriplem6 12198 Lemma for pythagtrip 12211. Calculate (√‘(𝐶𝐵)). (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) = ((𝐶𝐵) gcd 𝐴))
 
Theorempythagtriplem7 12199 Lemma for pythagtrip 12211. Calculate (√‘(𝐶 + 𝐵)). (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) = ((𝐶 + 𝐵) gcd 𝐴))
 
Theorempythagtriplem8 12200 Lemma for pythagtrip 12211. Show that (√‘(𝐶𝐵)) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) ∈ ℕ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13920
  Copyright terms: Public domain < Previous  Next >