Theorem List for Intuitionistic Logic Explorer - 12101-12200 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | fprodxp 12101* |
Combine two products into a single product over the cartesian product.
(Contributed by Scott Fenton, 1-Feb-2018.)
|
| ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑧 ∈ (𝐴 × 𝐵)𝐷) |
| |
| Theorem | fprodcnv 12102* |
Transform a product region using the converse operation. (Contributed
by Scott Fenton, 1-Feb-2018.)
|
| ⊢ (𝑥 = 〈𝑗, 𝑘〉 → 𝐵 = 𝐷)
& ⊢ (𝑦 = 〈𝑘, 𝑗〉 → 𝐶 = 𝐷)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → Rel 𝐴)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑥 ∈ 𝐴 𝐵 = ∏𝑦 ∈ ◡ 𝐴𝐶) |
| |
| Theorem | fprodcom2fi 12103* |
Interchange order of multiplication. Note that 𝐵(𝑗) and
𝐷(𝑘) are not necessarily constant
expressions. (Contributed by
Scott Fenton, 1-Feb-2018.) (Proof shortened by JJ, 2-Aug-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐶) → 𝐷 ∈ Fin) & ⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) ↔ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷))) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐸 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐸 = ∏𝑘 ∈ 𝐶 ∏𝑗 ∈ 𝐷 𝐸) |
| |
| Theorem | fprodcom 12104* |
Interchange product order. (Contributed by Scott Fenton,
2-Feb-2018.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑗 ∈ 𝐴 ∏𝑘 ∈ 𝐵 𝐶 = ∏𝑘 ∈ 𝐵 ∏𝑗 ∈ 𝐴 𝐶) |
| |
| Theorem | fprod0diagfz 12105* |
Two ways to express "the product of 𝐴(𝑗, 𝑘) over the triangular
region 𝑀 ≤ 𝑗, 𝑀 ≤ 𝑘, 𝑗 + 𝑘 ≤ 𝑁. Compare
fisum0diag 11918. (Contributed by Scott Fenton, 2-Feb-2018.)
|
| ⊢ ((𝜑 ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗)))) → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℤ)
⇒ ⊢ (𝜑 → ∏𝑗 ∈ (0...𝑁)∏𝑘 ∈ (0...(𝑁 − 𝑗))𝐴 = ∏𝑘 ∈ (0...𝑁)∏𝑗 ∈ (0...(𝑁 − 𝑘))𝐴) |
| |
| Theorem | fprodrec 12106* |
The finite product of reciprocals is the reciprocal of the product.
(Contributed by Jim Kingdon, 28-Aug-2024.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (1 / 𝐵) = (1 / ∏𝑘 ∈ 𝐴 𝐵)) |
| |
| Theorem | fproddivap 12107* |
The quotient of two finite products. (Contributed by Scott Fenton,
15-Jan-2018.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
| |
| Theorem | fproddivapf 12108* |
The quotient of two finite products. A version of fproddivap 12107 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
| |
| Theorem | fprodsplitf 12109* |
Split a finite product into two parts. A version of fprodsplit 12074 using
bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝑈 𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ 𝐵 𝐶)) |
| |
| Theorem | fprodsplitsn 12110* |
Separate out a term in a finite product. See also fprodunsn 12081 which is
the same but with a distinct variable condition in place of
Ⅎ𝑘𝜑. (Contributed by Glauco Siliprandi,
5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ Ⅎ𝑘𝐷
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷)
& ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| |
| Theorem | fprodsplit1f 12111* |
Separate out a term in a finite product. (Contributed by Glauco
Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → Ⅎ𝑘𝐷)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
| |
| Theorem | fprodclf 12112* |
Closure of a finite product of complex numbers. A version of fprodcl 12084
using bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| |
| Theorem | fprodap0f 12113* |
A finite product of terms apart from zero is apart from zero. A version
of fprodap0 12098 using bound-variable hypotheses instead of
distinct
variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(Revised by Jim Kingdon, 30-Aug-2024.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 # 0) |
| |
| Theorem | fprodge0 12114* |
If all the terms of a finite product are nonnegative, so is the product.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| |
| Theorem | fprodeq0g 12115* |
Any finite product containing a zero term is itself zero. (Contributed
by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) |
| |
| Theorem | fprodge1 12116* |
If all of the terms of a finite product are greater than or equal to
1, so is the product. (Contributed by Glauco
Siliprandi,
5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) ⇒ ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| |
| Theorem | fprodle 12117* |
If all the terms of two finite products are nonnegative and compare, so
do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ≤ ∏𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | fprodmodd 12118* |
If all factors of two finite products are equal modulo 𝑀, the
products are equal modulo 𝑀. (Contributed by AV, 7-Jul-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) ⇒ ⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝐴 𝐶 mod 𝑀)) |
| |
| 4.10 Elementary
trigonometry
|
| |
| 4.10.1 The exponential, sine, and cosine
functions
|
| |
| Syntax | ce 12119 |
Extend class notation to include the exponential function.
|
| class exp |
| |
| Syntax | ceu 12120 |
Extend class notation to include Euler's constant e =
2.71828....
|
| class e |
| |
| Syntax | csin 12121 |
Extend class notation to include the sine function.
|
| class sin |
| |
| Syntax | ccos 12122 |
Extend class notation to include the cosine function.
|
| class cos |
| |
| Syntax | ctan 12123 |
Extend class notation to include the tangent function.
|
| class tan |
| |
| Syntax | cpi 12124 |
Extend class notation to include the constant pi, π
= 3.14159....
|
| class π |
| |
| Definition | df-ef 12125* |
Define the exponential function. Its value at the complex number 𝐴
is (exp‘𝐴) and is called the "exponential
of 𝐴"; see
efval 12138. (Contributed by NM, 14-Mar-2005.)
|
| ⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0
((𝑥↑𝑘) / (!‘𝑘))) |
| |
| Definition | df-e 12126 |
Define Euler's constant e = 2.71828.... (Contributed
by NM,
14-Mar-2005.)
|
| ⊢ e = (exp‘1) |
| |
| Definition | df-sin 12127 |
Define the sine function. (Contributed by NM, 14-Mar-2005.)
|
| ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) −
(exp‘(-i · 𝑥))) / (2 · i))) |
| |
| Definition | df-cos 12128 |
Define the cosine function. (Contributed by NM, 14-Mar-2005.)
|
| ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) +
(exp‘(-i · 𝑥))) / 2)) |
| |
| Definition | df-tan 12129 |
Define the tangent function. We define it this way for cmpt 4124,
which
requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by Mario
Carneiro, 14-Mar-2014.)
|
| ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦
((sin‘𝑥) /
(cos‘𝑥))) |
| |
| Definition | df-pi 12130 |
Define the constant pi, π = 3.14159..., which is the
smallest
positive number whose sine is zero. Definition of π in [Gleason]
p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV,
14-Sep-2020.)
|
| ⊢ π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, <
) |
| |
| Theorem | eftcl 12131 |
Closure of a term in the series expansion of the exponential function.
(Contributed by Paul Chapman, 11-Sep-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℂ) |
| |
| Theorem | reeftcl 12132 |
The terms of the series expansion of the exponential function at a real
number are real. (Contributed by Paul Chapman, 15-Jan-2008.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℝ) |
| |
| Theorem | eftabs 12133 |
The absolute value of a term in the series expansion of the exponential
function. (Contributed by Paul Chapman, 23-Nov-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) →
(abs‘((𝐴↑𝐾) / (!‘𝐾))) = (((abs‘𝐴)↑𝐾) / (!‘𝐾))) |
| |
| Theorem | eftvalcn 12134* |
The value of a term in the series expansion of the exponential function.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) |
| |
| Theorem | efcllemp 12135* |
Lemma for efcl 12141. The series that defines the exponential
function
converges. The ratio test cvgratgt0 12010 is used to show convergence.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → (2 ·
(abs‘𝐴)) < 𝐾)
⇒ ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) |
| |
| Theorem | efcllem 12136* |
Lemma for efcl 12141. The series that defines the exponential
function
converges. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝
) |
| |
| Theorem | ef0lem 12137* |
The series defining the exponential function converges in the (trivial)
case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.)
(Revised by Mario Carneiro, 28-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) |
| |
| Theorem | efval 12138* |
Value of the exponential function. (Contributed by NM, 8-Jan-2006.)
(Revised by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
| |
| Theorem | esum 12139 |
Value of Euler's constant e = 2.71828.... (Contributed
by Steve
Rodriguez, 5-Mar-2006.)
|
| ⊢ e = Σ𝑘 ∈ ℕ0 (1 /
(!‘𝑘)) |
| |
| Theorem | eff 12140 |
Domain and codomain of the exponential function. (Contributed by Paul
Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro,
28-Apr-2014.)
|
| ⊢ exp:ℂ⟶ℂ |
| |
| Theorem | efcl 12141 |
Closure law for the exponential function. (Contributed by NM,
8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈
ℂ) |
| |
| Theorem | efval2 12142* |
Value of the exponential function. (Contributed by Mario Carneiro,
29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
| |
| Theorem | efcvg 12143* |
The series that defines the exponential function converges to it.
(Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro,
28-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ⇝ (exp‘𝐴)) |
| |
| Theorem | efcvgfsum 12144* |
Exponential function convergence in terms of a sequence of partial
finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario
Carneiro, 28-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦
Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |
| |
| Theorem | reefcl 12145 |
The exponential function is real if its argument is real. (Contributed
by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈
ℝ) |
| |
| Theorem | reefcld 12146 |
The exponential function is real if its argument is real. (Contributed
by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ) |
| |
| Theorem | ere 12147 |
Euler's constant e = 2.71828... is a real number.
(Contributed by
NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.)
|
| ⊢ e ∈ ℝ |
| |
| Theorem | ege2le3 12148 |
Euler's constant e = 2.71828... is bounded by 2 and 3.
(Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro,
28-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 /
2)↑𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 /
(!‘𝑛))) ⇒ ⊢ (2 ≤ e ∧ e ≤
3) |
| |
| Theorem | ef0 12149 |
Value of the exponential function at 0. Equation 2 of [Gleason] p. 308.
(Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario
Carneiro, 28-Apr-2014.)
|
| ⊢ (exp‘0) = 1 |
| |
| Theorem | efcj 12150 |
The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308.
(Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro,
28-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ →
(exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴))) |
| |
| Theorem | efaddlem 12151* |
Lemma for efadd 12152 (exponential function addition law).
(Contributed by
Mario Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) |
| |
| Theorem | efadd 12152 |
Sum of exponents law for exponential function. (Contributed by NM,
10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) |
| |
| Theorem | efcan 12153 |
Cancellation law for exponential function. Equation 27 of [Rudin] p. 164.
(Contributed by NM, 13-Jan-2006.)
|
| ⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) · (exp‘-𝐴)) = 1) |
| |
| Theorem | efap0 12154 |
The exponential of a complex number is apart from zero. (Contributed by
Jim Kingdon, 12-Dec-2022.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) # 0) |
| |
| Theorem | efne0 12155 |
The exponential of a complex number is nonzero. Corollary 15-4.3 of
[Gleason] p. 309. The same result also
holds with not equal replaced by
apart, as seen at efap0 12154 (which will be more useful in most
contexts).
(Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro,
29-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0) |
| |
| Theorem | efneg 12156 |
The exponential of the opposite is the inverse of the exponential.
(Contributed by Mario Carneiro, 10-May-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴))) |
| |
| Theorem | eff2 12157 |
The exponential function maps the complex numbers to the nonzero complex
numbers. (Contributed by Paul Chapman, 16-Apr-2008.)
|
| ⊢ exp:ℂ⟶(ℂ ∖
{0}) |
| |
| Theorem | efsub 12158 |
Difference of exponents law for exponential function. (Contributed by
Steve Rodriguez, 25-Nov-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) |
| |
| Theorem | efexp 12159 |
The exponential of an integer power. Corollary 15-4.4 of [Gleason]
p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.)
(Revised by Mario Carneiro, 5-Jun-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁)) |
| |
| Theorem | efzval 12160 |
Value of the exponential function for integers. Special case of efval 12138.
Equation 30 of [Rudin] p. 164. (Contributed
by Steve Rodriguez,
15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
|
| ⊢ (𝑁 ∈ ℤ → (exp‘𝑁) = (e↑𝑁)) |
| |
| Theorem | efgt0 12161 |
The exponential of a real number is greater than 0. (Contributed by Paul
Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℝ → 0 <
(exp‘𝐴)) |
| |
| Theorem | rpefcl 12162 |
The exponential of a real number is a positive real. (Contributed by
Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈
ℝ+) |
| |
| Theorem | rpefcld 12163 |
The exponential of a real number is a positive real. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (exp‘𝐴) ∈
ℝ+) |
| |
| Theorem | eftlcvg 12164* |
The tail series of the exponential function are convergent.
(Contributed by Mario Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) →
seq𝑀( + , 𝐹) ∈ dom ⇝
) |
| |
| Theorem | eftlcl 12165* |
Closure of the sum of an infinite tail of the series defining the
exponential function. (Contributed by Paul Chapman, 17-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) →
Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) |
| |
| Theorem | reeftlcl 12166* |
Closure of the sum of an infinite tail of the series defining the
exponential function. (Contributed by Paul Chapman, 17-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) →
Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) |
| |
| Theorem | eftlub 12167* |
An upper bound on the absolute value of the infinite tail of the series
expansion of the exponential function on the closed unit disk.
(Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario
Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦
(((abs‘𝐴)↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦
((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) ≤
1) ⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))) |
| |
| Theorem | efsep 12168* |
Separate out the next term of the power series expansion of the
exponential function. The last hypothesis allows the separated terms to
be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.)
(Revised by Mario Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑀 ∈
ℕ0
& ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) & ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) ⇒ ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| |
| Theorem | effsumlt 12169* |
The partial sums of the series expansion of the exponential function at
a positive real number are bounded by the value of the function.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro,
29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) |
| |
| Theorem | eft0val 12170 |
The value of the first term of the series expansion of the exponential
function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by
Mario Carneiro, 29-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) =
1) |
| |
| Theorem | ef4p 12171* |
Separate out the first four terms of the infinite series expansion of
the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈
(ℤ≥‘4)(𝐹‘𝑘))) |
| |
| Theorem | efgt1p2 12172 |
The exponential of a positive real number is greater than the sum of the
first three terms of the series expansion. (Contributed by Mario
Carneiro, 15-Sep-2014.)
|
| ⊢ (𝐴 ∈ ℝ+ → ((1 +
𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) |
| |
| Theorem | efgt1p 12173 |
The exponential of a positive real number is greater than 1 plus that
number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by
Mario Carneiro, 30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℝ+ → (1 +
𝐴) < (exp‘𝐴)) |
| |
| Theorem | efgt1 12174 |
The exponential of a positive real number is greater than 1.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro,
30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℝ+ → 1 <
(exp‘𝐴)) |
| |
| Theorem | efltim 12175 |
The exponential function on the reals is strictly increasing.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
20-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (exp‘𝐴) < (exp‘𝐵))) |
| |
| Theorem | reef11 12176 |
The exponential function on real numbers is one-to-one. (Contributed by
NM, 21-Aug-2008.) (Revised by Jim Kingdon, 20-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) = (exp‘𝐵) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | reeff1 12177 |
The exponential function maps real arguments one-to-one to positive
reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by
Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ |
| |
| Theorem | eflegeo 12178 |
The exponential function on the reals between 0 and 1 lies below the
comparable geometric series sum. (Contributed by Paul Chapman,
11-Sep-2007.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
| |
| Theorem | sinval 12179 |
Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised
by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i ·
𝐴)) − (exp‘(-i
· 𝐴))) / (2
· i))) |
| |
| Theorem | cosval 12180 |
Value of the cosine function. (Contributed by NM, 14-Mar-2005.)
(Revised by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i ·
𝐴)) + (exp‘(-i
· 𝐴))) /
2)) |
| |
| Theorem | sinf 12181 |
Domain and codomain of the sine function. (Contributed by Paul Chapman,
22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ sin:ℂ⟶ℂ |
| |
| Theorem | cosf 12182 |
Domain and codomain of the cosine function. (Contributed by Paul Chapman,
22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ cos:ℂ⟶ℂ |
| |
| Theorem | sincl 12183 |
Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised
by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈
ℂ) |
| |
| Theorem | coscl 12184 |
Closure of the cosine function with a complex argument. (Contributed by
NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈
ℂ) |
| |
| Theorem | tanvalap 12185 |
Value of the tangent function. (Contributed by Mario Carneiro,
14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
| |
| Theorem | tanclap 12186 |
The closure of the tangent function with a complex argument. (Contributed
by David A. Wheeler, 15-Mar-2014.) (Revised by Jim Kingdon,
21-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈
ℂ) |
| |
| Theorem | sincld 12187 |
Closure of the sine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℂ) |
| |
| Theorem | coscld 12188 |
Closure of the cosine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℂ) |
| |
| Theorem | tanclapd 12189 |
Closure of the tangent function. (Contributed by Mario Carneiro,
29-May-2016.) (Revised by Jim Kingdon, 22-Dec-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (cos‘𝐴) # 0)
⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℂ) |
| |
| Theorem | tanval2ap 12190 |
Express the tangent function directly in terms of exp.
(Contributed
by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon,
22-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((exp‘(i ·
𝐴)) − (exp‘(-i
· 𝐴))) / (i
· ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) |
| |
| Theorem | tanval3ap 12191 |
Express the tangent function directly in terms of exp.
(Contributed
by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon,
22-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ ((exp‘(2
· (i · 𝐴)))
+ 1) # 0) → (tan‘𝐴) = (((exp‘(2 · (i ·
𝐴))) − 1) / (i
· ((exp‘(2 · (i · 𝐴))) + 1)))) |
| |
| Theorem | resinval 12192 |
The sine of a real number in terms of the exponential function.
(Contributed by NM, 30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) =
(ℑ‘(exp‘(i · 𝐴)))) |
| |
| Theorem | recosval 12193 |
The cosine of a real number in terms of the exponential function.
(Contributed by NM, 30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i
· 𝐴)))) |
| |
| Theorem | efi4p 12194* |
Separate out the first four terms of the infinite series expansion of
the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘(i
· 𝐴)) = (((1
− ((𝐴↑2) / 2))
+ (i · (𝐴 −
((𝐴↑3) / 6)))) +
Σ𝑘 ∈
(ℤ≥‘4)(𝐹‘𝑘))) |
| |
| Theorem | resin4p 12195* |
Separate out the first four terms of the infinite series expansion of
the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) +
(ℑ‘Σ𝑘
∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| |
| Theorem | recos4p 12196* |
Separate out the first four terms of the infinite series expansion of
the cosine of a real number. (Contributed by Paul Chapman,
19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) +
(ℜ‘Σ𝑘
∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| |
| Theorem | resincl 12197 |
The sine of a real number is real. (Contributed by NM, 30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈
ℝ) |
| |
| Theorem | recoscl 12198 |
The cosine of a real number is real. (Contributed by NM, 30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈
ℝ) |
| |
| Theorem | retanclap 12199 |
The closure of the tangent function with a real argument. (Contributed by
David A. Wheeler, 15-Mar-2014.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈
ℝ) |
| |
| Theorem | resincld 12200 |
Closure of the sine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℝ) |