| Intuitionistic Logic Explorer Theorem List (p. 122 of 158)  | < Previous Next > | |
| Bad symbols? Try the
 GIF version.  | 
||
| 
 Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List  | 
||
| Type | Label | Description | 
|---|---|---|
| Statement | ||
| Theorem | flodddiv4 12101 | The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2))) | ||
| Theorem | fldivndvdslt 12102 | The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.) | 
| ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿)) | ||
| Theorem | flodddiv4lt 12103 | The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021.) | 
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4)) | ||
| Theorem | flodddiv4t2lthalf 12104 | The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) | 
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) | ||
| Syntax | cbits 12105 | Define the binary bits of an integer. | 
| class bits | ||
| Definition | df-bits 12106* | Define the binary bits of an integer. The expression 𝑀 ∈ (bits‘𝑁) means that the 𝑀-th bit of 𝑁 is 1 (and its negation means the bit is 0). (Contributed by Mario Carneiro, 4-Sep-2016.) | 
| ⊢ bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))}) | ||
| Theorem | bitsfval 12107* | Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) | 
| ⊢ (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}) | ||
| Theorem | bitsval 12108 | Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) | 
| ⊢ (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) | ||
| Theorem | bitsval2 12109 | Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) | 
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) | ||
| Theorem | bitsss 12110 | The set of bits of an integer is a subset of ℕ0. (Contributed by Mario Carneiro, 5-Sep-2016.) | 
| ⊢ (bits‘𝑁) ⊆ ℕ0 | ||
| Theorem | bitsf 12111 | The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016.) | 
| ⊢ bits:ℤ⟶𝒫 ℕ0 | ||
| Theorem | bits0 12112 | Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) | 
| ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ 𝑁)) | ||
| Theorem | bits0e 12113 | The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) | 
| ⊢ (𝑁 ∈ ℤ → ¬ 0 ∈ (bits‘(2 · 𝑁))) | ||
| Theorem | bits0o 12114 | The zeroth bit of an odd number is one. (Contributed by Mario Carneiro, 5-Sep-2016.) | 
| ⊢ (𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1))) | ||
| Theorem | bitsp1 12115 | The 𝑀 + 1-th bit of 𝑁 is the 𝑀-th bit of ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 5-Sep-2016.) | 
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))))) | ||
| Theorem | bitsp1e 12116 | The 𝑀 + 1-th bit of 2𝑁 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.) | 
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘(2 · 𝑁)) ↔ 𝑀 ∈ (bits‘𝑁))) | ||
| Theorem | bitsp1o 12117 | The 𝑀 + 1-th bit of 2𝑁 + 1 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.) | 
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁))) | ||
| Theorem | bitsfzolem 12118* | Lemma for bitsfzo 12119. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 1-Oct-2020.) | 
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀)) & ⊢ 𝑆 = inf({𝑛 ∈ ℕ0 ∣ 𝑁 < (2↑𝑛)}, ℝ, < ) ⇒ ⊢ (𝜑 → 𝑁 ∈ (0..^(2↑𝑀))) | ||
| Theorem | bitsfzo 12119 | The bits of a number are all at positions less than 𝑀 iff the number is nonnegative and less than 2↑𝑀. (Contributed by Mario Carneiro, 5-Sep-2016.) (Proof shortened by AV, 1-Oct-2020.) | 
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑀)) ↔ (bits‘𝑁) ⊆ (0..^𝑀))) | ||
| Syntax | cgcd 12120 | Extend the definition of a class to include the greatest common divisor operator. | 
| class gcd | ||
| Definition | df-gcd 12121* | Define the gcd operator. For example, (-6 gcd 9) = 3 (ex-gcd 15377). (Contributed by Paul Chapman, 21-Mar-2011.) | 
| ⊢ gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ))) | ||
| Theorem | gcdmndc 12122 | Decidablity lemma used in various proofs related to gcd. (Contributed by Jim Kingdon, 12-Dec-2021.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0)) | ||
| Theorem | dvdsbnd 12123* | There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.) | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑛) ¬ 𝑚 ∥ 𝐴) | ||
| Theorem | gcdsupex 12124* | Existence of the supremum used in defining gcd. (Contributed by Jim Kingdon, 12-Dec-2021.) | 
| ⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)}𝑦 < 𝑧))) | ||
| Theorem | gcdsupcl 12125* | Closure of the supremum used in defining gcd. A lemma for gcdval 12126 and gcdn0cl 12129. (Contributed by Jim Kingdon, 11-Dec-2021.) | 
| ⊢ (((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑋 ∧ 𝑛 ∥ 𝑌)}, ℝ, < ) ∈ ℕ) | ||
| Theorem | gcdval 12126* | The value of the gcd operator. (𝑀 gcd 𝑁) is the greatest common divisor of 𝑀 and 𝑁. If 𝑀 and 𝑁 are both 0, the result is defined conventionally as 0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ))) | ||
| Theorem | gcd0val 12127 | The value, by convention, of the gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.) | 
| ⊢ (0 gcd 0) = 0 | ||
| Theorem | gcdn0val 12128* | The value of the gcd operator when at least one operand is nonzero. (Contributed by Paul Chapman, 21-Mar-2011.) | 
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) | ||
| Theorem | gcdn0cl 12129 | Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.) | 
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ∈ ℕ) | ||
| Theorem | gcddvds 12130 | The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) | ||
| Theorem | dvdslegcd 12131 | An integer which divides both operands of the gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011.) | 
| ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁))) | ||
| Theorem | nndvdslegcd 12132 | A positive integer which divides both positive operands of the gcd operator is bounded by it. (Contributed by AV, 9-Aug-2020.) | 
| ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁))) | ||
| Theorem | gcdcl 12133 | Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0) | ||
| Theorem | gcdnncl 12134 | Closure of the gcd operator. (Contributed by Thierry Arnoux, 2-Feb-2020.) | 
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ) | ||
| Theorem | gcdcld 12135 | Closure of the gcd operator. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) ∈ ℕ0) | ||
| Theorem | gcd2n0cl 12136 | Closure of the gcd operator if the second operand is not 0. (Contributed by AV, 10-Jul-2021.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 gcd 𝑁) ∈ ℕ) | ||
| Theorem | zeqzmulgcd 12137* | An integer is the product of an integer and the gcd of it and another integer. (Contributed by AV, 11-Jul-2021.) | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑛 ∈ ℤ 𝐴 = (𝑛 · (𝐴 gcd 𝐵))) | ||
| Theorem | divgcdz 12138 | An integer divided by the gcd of it and a nonzero integer is an integer. (Contributed by AV, 11-Jul-2021.) | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ) | ||
| Theorem | gcdf 12139 | Domain and codomain of the gcd operator. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 16-Nov-2013.) | 
| ⊢ gcd :(ℤ × ℤ)⟶ℕ0 | ||
| Theorem | gcdcom 12140 | The gcd operator is commutative. Theorem 1.4(a) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 21-Mar-2011.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | ||
| Theorem | gcdcomd 12141 | The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.) | 
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | ||
| Theorem | divgcdnn 12142 | A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.) | 
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ) | ||
| Theorem | divgcdnnr 12143 | A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.) | 
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐵 gcd 𝐴)) ∈ ℕ) | ||
| Theorem | gcdeq0 12144 | The gcd of two integers is zero iff they are both zero. (Contributed by Paul Chapman, 21-Mar-2011.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) = 0 ↔ (𝑀 = 0 ∧ 𝑁 = 0))) | ||
| Theorem | gcdn0gt0 12145 | The gcd of two integers is positive (nonzero) iff they are not both zero. (Contributed by Paul Chapman, 22-Jun-2011.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ 0 < (𝑀 gcd 𝑁))) | ||
| Theorem | gcd0id 12146 | The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.) | 
| ⊢ (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁)) | ||
| Theorem | gcdid0 12147 | The gcd of an integer and 0 is the integer's absolute value. Theorem 1.4(d)2 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 31-Mar-2011.) | 
| ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 0) = (abs‘𝑁)) | ||
| Theorem | nn0gcdid0 12148 | The gcd of a nonnegative integer with 0 is itself. (Contributed by Paul Chapman, 31-Mar-2011.) | 
| ⊢ (𝑁 ∈ ℕ0 → (𝑁 gcd 0) = 𝑁) | ||
| Theorem | gcdneg 12149 | Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁)) | ||
| Theorem | neggcd 12150 | Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 22-Jun-2011.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd 𝑁) = (𝑀 gcd 𝑁)) | ||
| Theorem | gcdaddm 12151 | Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.) | 
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀)))) | ||
| Theorem | gcdadd 12152 | The GCD of two numbers is the same as the GCD of the left and their sum. (Contributed by Scott Fenton, 20-Apr-2014.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + 𝑀))) | ||
| Theorem | gcdid 12153 | The gcd of a number and itself is its absolute value. (Contributed by Paul Chapman, 31-Mar-2011.) | 
| ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁)) | ||
| Theorem | gcd1 12154 | The gcd of a number with 1 is 1. Theorem 1.4(d)1 in [ApostolNT] p. 16. (Contributed by Mario Carneiro, 19-Feb-2014.) | 
| ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) = 1) | ||
| Theorem | gcdabs 12155 | The gcd of two integers is the same as that of their absolute values. (Contributed by Paul Chapman, 31-Mar-2011.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)) | ||
| Theorem | gcdabs1 12156 | gcd of the absolute value of the first operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘𝑁) gcd 𝑀) = (𝑁 gcd 𝑀)) | ||
| Theorem | gcdabs2 12157 | gcd of the absolute value of the second operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd (abs‘𝑀)) = (𝑁 gcd 𝑀)) | ||
| Theorem | modgcd 12158 | The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁)) | ||
| Theorem | 1gcd 12159 | The GCD of one and an integer is one. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ (𝑀 ∈ ℤ → (1 gcd 𝑀) = 1) | ||
| Theorem | gcdmultipled 12160 | The greatest common divisor of a nonnegative integer 𝑀 and a multiple of it is 𝑀 itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) | 
| ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd (𝑁 · 𝑀)) = 𝑀) | ||
| Theorem | dvdsgcdidd 12161 | The greatest common divisor of a positive integer and another integer it divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) | 
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) = 𝑀) | ||
| Theorem | 6gcd4e2 12162 | The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) | 
| ⊢ (6 gcd 4) = 2 | ||
| Theorem | bezoutlemnewy 12163* | Lemma for Bézout's identity. The is-bezout predicate holds for (𝑦 mod 𝑊). (Contributed by Jim Kingdon, 6-Jan-2022.) | 
| ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) & ⊢ (𝜃 → 𝐴 ∈ ℕ0) & ⊢ (𝜃 → 𝐵 ∈ ℕ0) & ⊢ (𝜃 → 𝑊 ∈ ℕ) & ⊢ (𝜃 → [𝑦 / 𝑟]𝜑) & ⊢ (𝜃 → 𝑦 ∈ ℕ0) & ⊢ (𝜃 → [𝑊 / 𝑟]𝜑) ⇒ ⊢ (𝜃 → [(𝑦 mod 𝑊) / 𝑟]𝜑) | ||
| Theorem | bezoutlemstep 12164* | Lemma for Bézout's identity. This is the induction step for the proof by induction. (Contributed by Jim Kingdon, 3-Jan-2022.) | 
| ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) & ⊢ (𝜃 → 𝐴 ∈ ℕ0) & ⊢ (𝜃 → 𝐵 ∈ ℕ0) & ⊢ (𝜃 → 𝑊 ∈ ℕ) & ⊢ (𝜃 → [𝑦 / 𝑟]𝜑) & ⊢ (𝜃 → 𝑦 ∈ ℕ0) & ⊢ (𝜃 → [𝑊 / 𝑟]𝜑) & ⊢ (𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 𝑥 ∧ 𝑧 ∥ 𝑦))) & ⊢ ((𝜃 ∧ [(𝑦 mod 𝑊) / 𝑟]𝜑) → ∃𝑟 ∈ ℕ0 ([(𝑦 mod 𝑊) / 𝑥][𝑊 / 𝑦]𝜓 ∧ 𝜑)) & ⊢ Ⅎ𝑥𝜃 & ⊢ Ⅎ𝑟𝜃 ⇒ ⊢ (𝜃 → ∃𝑟 ∈ ℕ0 ([𝑊 / 𝑥]𝜓 ∧ 𝜑)) | ||
| Theorem | bezoutlemmain 12165* | Lemma for Bézout's identity. This is the main result which we prove by induction and which represents the application of the Extended Euclidean algorithm. (Contributed by Jim Kingdon, 30-Dec-2021.) | 
| ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) & ⊢ (𝜓 ↔ ∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑟 → (𝑧 ∥ 𝑥 ∧ 𝑧 ∥ 𝑦))) & ⊢ (𝜃 → 𝐴 ∈ ℕ0) & ⊢ (𝜃 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜃 → ∀𝑥 ∈ ℕ0 ([𝑥 / 𝑟]𝜑 → ∀𝑦 ∈ ℕ0 ([𝑦 / 𝑟]𝜑 → ∃𝑟 ∈ ℕ0 (𝜓 ∧ 𝜑)))) | ||
| Theorem | bezoutlema 12166* | Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐴. (Contributed by Jim Kingdon, 30-Dec-2021.) | 
| ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) & ⊢ (𝜃 → 𝐴 ∈ ℕ0) & ⊢ (𝜃 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜃 → [𝐴 / 𝑟]𝜑) | ||
| Theorem | bezoutlemb 12167* | Lemma for Bézout's identity. The is-bezout condition is satisfied by 𝐵. (Contributed by Jim Kingdon, 30-Dec-2021.) | 
| ⊢ (𝜑 ↔ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑟 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) & ⊢ (𝜃 → 𝐴 ∈ ℕ0) & ⊢ (𝜃 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜃 → [𝐵 / 𝑟]𝜑) | ||
| Theorem | bezoutlemex 12168* | Lemma for Bézout's identity. Existence of a number which we will later show to be the greater common divisor and its decomposition into cofactors. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jan-2022.) | 
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℕ0 (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | ||
| Theorem | bezoutlemzz 12169* | Lemma for Bézout's identity. Like bezoutlemex 12168 but where ' z ' is any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.) | 
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | ||
| Theorem | bezoutlemaz 12170* | Lemma for Bézout's identity. Like bezoutlemzz 12169 but where ' A ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.) | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | ||
| Theorem | bezoutlembz 12171* | Lemma for Bézout's identity. Like bezoutlemaz 12170 but where ' B ' can be any integer, not just a nonnegative one. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.) | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | ||
| Theorem | bezoutlembi 12172* | Lemma for Bézout's identity. Like bezoutlembz 12171 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.) | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑑 ∈ ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑑 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) | ||
| Theorem | bezoutlemmo 12173* | Lemma for Bézout's identity. There is at most one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) & ⊢ (𝜑 → 𝐸 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐸 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) ⇒ ⊢ (𝜑 → 𝐷 = 𝐸) | ||
| Theorem | bezoutlemeu 12174* | Lemma for Bézout's identity. There is exactly one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) ⇒ ⊢ (𝜑 → ∃!𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | ||
| Theorem | bezoutlemle 12175* | Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) & ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) → 𝑧 ≤ 𝐷)) | ||
| Theorem | bezoutlemsup 12176* | Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the supremum of divisors of both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) & ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ⇒ ⊢ (𝜑 → 𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}, ℝ, < )) | ||
| Theorem | dfgcd3 12177* | Alternate definition of the gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (℩𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁)))) | ||
| Theorem | bezout 12178* | 
Bézout's identity:  For any integers 𝐴 and 𝐵, there are
       integers 𝑥, 𝑦 such that (𝐴 gcd 𝐵) = 𝐴 · 𝑥 + 𝐵 · 𝑦.  This
       is Metamath 100 proof #60.
 The proof is constructive, in the sense that it applies the Extended Euclidian Algorithm to constuct a number which can be shown to be (𝐴 gcd 𝐵) and which satisfies the rest of the theorem. In the presence of excluded middle, it is common to prove Bézout's identity by taking the smallest number which satisfies the Bézout condition, and showing it is the greatest common divisor. But we do not have the ability to show that number exists other than by providing a way to determine it. (Contributed by Mario Carneiro, 22-Feb-2014.)  | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) | ||
| Theorem | dvdsgcd 12179 | An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 30-May-2014.) | 
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 gcd 𝑁))) | ||
| Theorem | dvdsgcdb 12180 | Biconditional form of dvdsgcd 12179. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ↔ 𝐾 ∥ (𝑀 gcd 𝑁))) | ||
| Theorem | dfgcd2 12181* | Alternate definition of the gcd operator, see definition in [ApostolNT] p. 15. (Contributed by AV, 8-Aug-2021.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐷 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) | ||
| Theorem | gcdass 12182 | Associative law for gcd operator. Theorem 1.4(b) in [ApostolNT] p. 16. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = (𝑁 gcd (𝑀 gcd 𝑃))) | ||
| Theorem | mulgcd 12183 | Distribute multiplication by a nonnegative integer over gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 30-May-2014.) | 
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))) | ||
| Theorem | absmulgcd 12184 | Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.) | 
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (abs‘(𝐾 · (𝑀 gcd 𝑁)))) | ||
| Theorem | mulgcdr 12185 | Reverse distribution law for the gcd operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 · 𝐶) gcd (𝐵 · 𝐶)) = ((𝐴 gcd 𝐵) · 𝐶)) | ||
| Theorem | gcddiv 12186 | Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ (𝐶 ∥ 𝐴 ∧ 𝐶 ∥ 𝐵)) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))) | ||
| Theorem | gcdmultiple 12187 | The GCD of a multiple of a number is the number itself. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) | ||
| Theorem | gcdmultiplez 12188 | Extend gcdmultiple 12187 so 𝑁 can be an integer. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) | ||
| Theorem | gcdzeq 12189 | A positive integer 𝐴 is equal to its gcd with an integer 𝐵 if and only if 𝐴 divides 𝐵. Generalization of gcdeq 12190. (Contributed by AV, 1-Jul-2020.) | 
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ 𝐴 ∥ 𝐵)) | ||
| Theorem | gcdeq 12190 | 𝐴 is equal to its gcd with 𝐵 if and only if 𝐴 divides 𝐵. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by AV, 8-Aug-2021.) | 
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ 𝐴 ∥ 𝐵)) | ||
| Theorem | dvdssqim 12191 | Unidirectional form of dvdssq 12198. (Contributed by Scott Fenton, 19-Apr-2014.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) | ||
| Theorem | dvdsmulgcd 12192 | Relationship between the order of an element and that of a multiple. (a divisibility equivalent). (Contributed by Stefan O'Rear, 6-Sep-2015.) | 
| ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)))) | ||
| Theorem | rpmulgcd 12193 | If 𝐾 and 𝑀 are relatively prime, then the GCD of 𝐾 and 𝑀 · 𝑁 is the GCD of 𝐾 and 𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁)) | ||
| Theorem | rplpwr 12194 | If 𝐴 and 𝐵 are relatively prime, then so are 𝐴↑𝑁 and 𝐵. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd 𝐵) = 1)) | ||
| Theorem | rppwr 12195 | If 𝐴 and 𝐵 are relatively prime, then so are 𝐴↑𝑁 and 𝐵↑𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = 1)) | ||
| Theorem | sqgcd 12196 | Square distributes over gcd. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2))) | ||
| Theorem | dvdssqlem 12197 | Lemma for dvdssq 12198. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) | ||
| Theorem | dvdssq 12198 | Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) | 
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) | ||
| Theorem | bezoutr 12199 | Partial converse to bezout 12178. Existence of a linear combination does not set the GCD, but it does upper bound it. (Contributed by Stefan O'Rear, 23-Sep-2014.) | 
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌))) | ||
| Theorem | bezoutr1 12200 | Converse of bezout 12178 for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014.) | 
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → (𝐴 gcd 𝐵) = 1)) | ||
| < Previous Next > | 
| Copyright terms: Public domain | < Previous Next > |