ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswomnimap GIF version

Theorem iswomnimap 7161
Description: The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
iswomnimap (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑉
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem iswomnimap
StepHypRef Expression
1 iswomni 7160 . . 3 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
2 2onn 6519 . . . . . 6 2o ∈ ω
3 elmapg 6658 . . . . . 6 ((2o ∈ ω ∧ 𝐴𝑉) → (𝑓 ∈ (2o𝑚 𝐴) ↔ 𝑓:𝐴⟶2o))
42, 3mpan 424 . . . . 5 (𝐴𝑉 → (𝑓 ∈ (2o𝑚 𝐴) ↔ 𝑓:𝐴⟶2o))
54imbi1d 231 . . . 4 (𝐴𝑉 → ((𝑓 ∈ (2o𝑚 𝐴) → DECID𝑥𝐴 (𝑓𝑥) = 1o) ↔ (𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
65albidv 1824 . . 3 (𝐴𝑉 → (∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → DECID𝑥𝐴 (𝑓𝑥) = 1o) ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
71, 6bitr4d 191 . 2 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → DECID𝑥𝐴 (𝑓𝑥) = 1o)))
8 df-ral 2460 . 2 (∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o ↔ ∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → DECID𝑥𝐴 (𝑓𝑥) = 1o))
97, 8bitr4di 198 1 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  DECID wdc 834  wal 1351   = wceq 1353  wcel 2148  wral 2455  ωcom 4588  wf 5211  cfv 5215  (class class class)co 5872  1oc1o 6407  2oc2o 6408  𝑚 cmap 6645  WOmnicwomni 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-id 4292  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-fv 5223  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1o 6414  df-2o 6415  df-map 6647  df-womni 7159
This theorem is referenced by:  enwomnilem  7164  nninfdcinf  7166  nninfwlporlem  7168  nninfwlpoim  7173  iswomninnlem  14657
  Copyright terms: Public domain W3C validator