ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswomnimap GIF version

Theorem iswomnimap 7329
Description: The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
iswomnimap (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑉
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem iswomnimap
StepHypRef Expression
1 iswomni 7328 . . 3 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
2 2onn 6665 . . . . . 6 2o ∈ ω
3 elmapg 6806 . . . . . 6 ((2o ∈ ω ∧ 𝐴𝑉) → (𝑓 ∈ (2o𝑚 𝐴) ↔ 𝑓:𝐴⟶2o))
42, 3mpan 424 . . . . 5 (𝐴𝑉 → (𝑓 ∈ (2o𝑚 𝐴) ↔ 𝑓:𝐴⟶2o))
54imbi1d 231 . . . 4 (𝐴𝑉 → ((𝑓 ∈ (2o𝑚 𝐴) → DECID𝑥𝐴 (𝑓𝑥) = 1o) ↔ (𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
65albidv 1870 . . 3 (𝐴𝑉 → (∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → DECID𝑥𝐴 (𝑓𝑥) = 1o) ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
71, 6bitr4d 191 . 2 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → DECID𝑥𝐴 (𝑓𝑥) = 1o)))
8 df-ral 2513 . 2 (∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o ↔ ∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → DECID𝑥𝐴 (𝑓𝑥) = 1o))
97, 8bitr4di 198 1 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  DECID wdc 839  wal 1393   = wceq 1395  wcel 2200  wral 2508  ωcom 4681  wf 5313  cfv 5317  (class class class)co 6000  1oc1o 6553  2oc2o 6554  𝑚 cmap 6793  WOmnicwomni 7326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1o 6560  df-2o 6561  df-map 6795  df-womni 7327
This theorem is referenced by:  enwomnilem  7332  nninfdcinf  7334  nninfwlporlem  7336  nninfwlpoim  7342  nninfinfwlpo  7343  iswomninnlem  16376
  Copyright terms: Public domain W3C validator