| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iswomnimap | GIF version | ||
| Description: The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| Ref | Expression |
|---|---|
| iswomnimap | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswomni 7328 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | |
| 2 | 2onn 6665 | . . . . . 6 ⊢ 2o ∈ ω | |
| 3 | elmapg 6806 | . . . . . 6 ⊢ ((2o ∈ ω ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (2o ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶2o)) | |
| 4 | 2, 3 | mpan 424 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (2o ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶2o)) |
| 5 | 4 | imbi1d 231 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ↔ (𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| 6 | 5 | albidv 1870 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| 7 | 1, 6 | bitr4d 191 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| 8 | df-ral 2513 | . 2 ⊢ (∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ ∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | |
| 9 | 7, 8 | bitr4di 198 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 DECID wdc 839 ∀wal 1393 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ωcom 4681 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 1oc1o 6553 2oc2o 6554 ↑𝑚 cmap 6793 WOmnicwomni 7326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1o 6560 df-2o 6561 df-map 6795 df-womni 7327 |
| This theorem is referenced by: enwomnilem 7332 nninfdcinf 7334 nninfwlporlem 7336 nninfwlpoim 7342 nninfinfwlpo 7343 iswomninnlem 16376 |
| Copyright terms: Public domain | W3C validator |