| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iswomnimap | GIF version | ||
| Description: The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| Ref | Expression |
|---|---|
| iswomnimap | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswomni 7288 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | |
| 2 | 2onn 6625 | . . . . . 6 ⊢ 2o ∈ ω | |
| 3 | elmapg 6766 | . . . . . 6 ⊢ ((2o ∈ ω ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (2o ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶2o)) | |
| 4 | 2, 3 | mpan 424 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (2o ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶2o)) |
| 5 | 4 | imbi1d 231 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ↔ (𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| 6 | 5 | albidv 1848 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| 7 | 1, 6 | bitr4d 191 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| 8 | df-ral 2490 | . 2 ⊢ (∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ ∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | |
| 9 | 7, 8 | bitr4di 198 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 DECID wdc 836 ∀wal 1371 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ωcom 4651 ⟶wf 5281 ‘cfv 5285 (class class class)co 5962 1oc1o 6513 2oc2o 6514 ↑𝑚 cmap 6753 WOmnicwomni 7286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-id 4353 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1o 6520 df-2o 6521 df-map 6755 df-womni 7287 |
| This theorem is referenced by: enwomnilem 7292 nninfdcinf 7294 nninfwlporlem 7296 nninfwlpoim 7302 nninfinfwlpo 7303 iswomninnlem 16160 |
| Copyright terms: Public domain | W3C validator |