![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iswomnimap | GIF version |
Description: The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.) |
Ref | Expression |
---|---|
iswomnimap | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iswomni 7160 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | |
2 | 2onn 6519 | . . . . . 6 ⊢ 2o ∈ ω | |
3 | elmapg 6658 | . . . . . 6 ⊢ ((2o ∈ ω ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (2o ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶2o)) | |
4 | 2, 3 | mpan 424 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (2o ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶2o)) |
5 | 4 | imbi1d 231 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ↔ (𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
6 | 5 | albidv 1824 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
7 | 1, 6 | bitr4d 191 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
8 | df-ral 2460 | . 2 ⊢ (∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ ∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | |
9 | 7, 8 | bitr4di 198 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 DECID wdc 834 ∀wal 1351 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ωcom 4588 ⟶wf 5211 ‘cfv 5215 (class class class)co 5872 1oc1o 6407 2oc2o 6408 ↑𝑚 cmap 6645 WOmnicwomni 7158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-nul 4128 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4003 df-opab 4064 df-id 4292 df-suc 4370 df-iom 4589 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-iota 5177 df-fun 5217 df-fn 5218 df-f 5219 df-fv 5223 df-ov 5875 df-oprab 5876 df-mpo 5877 df-1o 6414 df-2o 6415 df-map 6647 df-womni 7159 |
This theorem is referenced by: enwomnilem 7164 nninfdcinf 7166 nninfwlporlem 7168 nninfwlpoim 7173 iswomninnlem 14657 |
Copyright terms: Public domain | W3C validator |