Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iswomnimap | GIF version |
Description: The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.) |
Ref | Expression |
---|---|
iswomnimap | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iswomni 7141 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) | |
2 | 2onn 6500 | . . . . . 6 ⊢ 2o ∈ ω | |
3 | elmapg 6639 | . . . . . 6 ⊢ ((2o ∈ ω ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (2o ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶2o)) | |
4 | 2, 3 | mpan 422 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑓 ∈ (2o ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶2o)) |
5 | 4 | imbi1d 230 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ↔ (𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
6 | 5 | albidv 1817 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o) ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
7 | 1, 6 | bitr4d 190 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
8 | df-ral 2453 | . 2 ⊢ (∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ ∀𝑓(𝑓 ∈ (2o ↑𝑚 𝐴) → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | |
9 | 7, 8 | bitr4di 197 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 𝐴)DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 DECID wdc 829 ∀wal 1346 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ωcom 4574 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 1oc1o 6388 2oc2o 6389 ↑𝑚 cmap 6626 WOmnicwomni 7139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1o 6395 df-2o 6396 df-map 6628 df-womni 7140 |
This theorem is referenced by: enwomnilem 7145 nninfdcinf 7147 nninfwlporlem 7149 nninfwlpoim 7154 iswomninnlem 14081 |
Copyright terms: Public domain | W3C validator |