ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswomnimap GIF version

Theorem iswomnimap 7289
Description: The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
iswomnimap (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑉
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem iswomnimap
StepHypRef Expression
1 iswomni 7288 . . 3 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
2 2onn 6625 . . . . . 6 2o ∈ ω
3 elmapg 6766 . . . . . 6 ((2o ∈ ω ∧ 𝐴𝑉) → (𝑓 ∈ (2o𝑚 𝐴) ↔ 𝑓:𝐴⟶2o))
42, 3mpan 424 . . . . 5 (𝐴𝑉 → (𝑓 ∈ (2o𝑚 𝐴) ↔ 𝑓:𝐴⟶2o))
54imbi1d 231 . . . 4 (𝐴𝑉 → ((𝑓 ∈ (2o𝑚 𝐴) → DECID𝑥𝐴 (𝑓𝑥) = 1o) ↔ (𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
65albidv 1848 . . 3 (𝐴𝑉 → (∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → DECID𝑥𝐴 (𝑓𝑥) = 1o) ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
71, 6bitr4d 191 . 2 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → DECID𝑥𝐴 (𝑓𝑥) = 1o)))
8 df-ral 2490 . 2 (∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o ↔ ∀𝑓(𝑓 ∈ (2o𝑚 𝐴) → DECID𝑥𝐴 (𝑓𝑥) = 1o))
97, 8bitr4di 198 1 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  DECID wdc 836  wal 1371   = wceq 1373  wcel 2177  wral 2485  ωcom 4651  wf 5281  cfv 5285  (class class class)co 5962  1oc1o 6513  2oc2o 6514  𝑚 cmap 6753  WOmnicwomni 7286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-id 4353  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1o 6520  df-2o 6521  df-map 6755  df-womni 7287
This theorem is referenced by:  enwomnilem  7292  nninfdcinf  7294  nninfwlporlem  7296  nninfwlpoim  7302  nninfinfwlpo  7303  iswomninnlem  16160
  Copyright terms: Public domain W3C validator