ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxprg GIF version

Theorem iunxprg 4007
Description: A pair index picks out two instances of an indexed union's argument. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Hypotheses
Ref Expression
iunxprg.1 (𝑥 = 𝐴𝐶 = 𝐷)
iunxprg.2 (𝑥 = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
iunxprg ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iunxprg
StepHypRef Expression
1 df-pr 3639 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 iuneq1 3939 . . . 4 ({𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶)
31, 2ax-mp 5 . . 3 𝑥 ∈ {𝐴, 𝐵}𝐶 = 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶
4 iunxun 4006 . . 3 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶 = ( 𝑥 ∈ {𝐴}𝐶 𝑥 ∈ {𝐵}𝐶)
53, 4eqtri 2225 . 2 𝑥 ∈ {𝐴, 𝐵}𝐶 = ( 𝑥 ∈ {𝐴}𝐶 𝑥 ∈ {𝐵}𝐶)
6 iunxprg.1 . . . . 5 (𝑥 = 𝐴𝐶 = 𝐷)
76iunxsng 4002 . . . 4 (𝐴𝑉 𝑥 ∈ {𝐴}𝐶 = 𝐷)
87adantr 276 . . 3 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴}𝐶 = 𝐷)
9 iunxprg.2 . . . . 5 (𝑥 = 𝐵𝐶 = 𝐸)
109iunxsng 4002 . . . 4 (𝐵𝑊 𝑥 ∈ {𝐵}𝐶 = 𝐸)
1110adantl 277 . . 3 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐵}𝐶 = 𝐸)
128, 11uneq12d 3327 . 2 ((𝐴𝑉𝐵𝑊) → ( 𝑥 ∈ {𝐴}𝐶 𝑥 ∈ {𝐵}𝐶) = (𝐷𝐸))
135, 12eqtrid 2249 1 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  cun 3163  {csn 3632  {cpr 3633   ciun 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-iun 3928
This theorem is referenced by:  unct  12755
  Copyright terms: Public domain W3C validator