![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iunxprg | GIF version |
Description: A pair index picks out two instances of an indexed union's argument. (Contributed by Alexander van der Vekens, 2-Feb-2018.) |
Ref | Expression |
---|---|
iunxprg.1 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
iunxprg.2 | ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
iunxprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷 ∪ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 3601 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | iuneq1 3901 | . . . 4 ⊢ ({𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) → ∪ 𝑥 ∈ {𝐴, 𝐵}𝐶 = ∪ 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ∪ 𝑥 ∈ {𝐴, 𝐵}𝐶 = ∪ 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶 |
4 | iunxun 3968 | . . 3 ⊢ ∪ 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶 = (∪ 𝑥 ∈ {𝐴}𝐶 ∪ ∪ 𝑥 ∈ {𝐵}𝐶) | |
5 | 3, 4 | eqtri 2198 | . 2 ⊢ ∪ 𝑥 ∈ {𝐴, 𝐵}𝐶 = (∪ 𝑥 ∈ {𝐴}𝐶 ∪ ∪ 𝑥 ∈ {𝐵}𝐶) |
6 | iunxprg.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) | |
7 | 6 | iunxsng 3964 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐶 = 𝐷) |
8 | 7 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ {𝐴}𝐶 = 𝐷) |
9 | iunxprg.2 | . . . . 5 ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) | |
10 | 9 | iunxsng 3964 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → ∪ 𝑥 ∈ {𝐵}𝐶 = 𝐸) |
11 | 10 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ {𝐵}𝐶 = 𝐸) |
12 | 8, 11 | uneq12d 3292 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∪ 𝑥 ∈ {𝐴}𝐶 ∪ ∪ 𝑥 ∈ {𝐵}𝐶) = (𝐷 ∪ 𝐸)) |
13 | 5, 12 | eqtrid 2222 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷 ∪ 𝐸)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∪ cun 3129 {csn 3594 {cpr 3595 ∪ ciun 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-iun 3890 |
This theorem is referenced by: unct 12445 |
Copyright terms: Public domain | W3C validator |