ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxprg GIF version

Theorem iunxprg 3946
Description: A pair index picks out two instances of an indexed union's argument. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Hypotheses
Ref Expression
iunxprg.1 (𝑥 = 𝐴𝐶 = 𝐷)
iunxprg.2 (𝑥 = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
iunxprg ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iunxprg
StepHypRef Expression
1 df-pr 3583 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 iuneq1 3879 . . . 4 ({𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶)
31, 2ax-mp 5 . . 3 𝑥 ∈ {𝐴, 𝐵}𝐶 = 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶
4 iunxun 3945 . . 3 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶 = ( 𝑥 ∈ {𝐴}𝐶 𝑥 ∈ {𝐵}𝐶)
53, 4eqtri 2186 . 2 𝑥 ∈ {𝐴, 𝐵}𝐶 = ( 𝑥 ∈ {𝐴}𝐶 𝑥 ∈ {𝐵}𝐶)
6 iunxprg.1 . . . . 5 (𝑥 = 𝐴𝐶 = 𝐷)
76iunxsng 3941 . . . 4 (𝐴𝑉 𝑥 ∈ {𝐴}𝐶 = 𝐷)
87adantr 274 . . 3 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴}𝐶 = 𝐷)
9 iunxprg.2 . . . . 5 (𝑥 = 𝐵𝐶 = 𝐸)
109iunxsng 3941 . . . 4 (𝐵𝑊 𝑥 ∈ {𝐵}𝐶 = 𝐸)
1110adantl 275 . . 3 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐵}𝐶 = 𝐸)
128, 11uneq12d 3277 . 2 ((𝐴𝑉𝐵𝑊) → ( 𝑥 ∈ {𝐴}𝐶 𝑥 ∈ {𝐵}𝐶) = (𝐷𝐸))
135, 12syl5eq 2211 1 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  cun 3114  {csn 3576  {cpr 3577   ciun 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-iun 3868
This theorem is referenced by:  unct  12375
  Copyright terms: Public domain W3C validator