ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxprg GIF version

Theorem iunxprg 3969
Description: A pair index picks out two instances of an indexed union's argument. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
Hypotheses
Ref Expression
iunxprg.1 (𝑥 = 𝐴𝐶 = 𝐷)
iunxprg.2 (𝑥 = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
iunxprg ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iunxprg
StepHypRef Expression
1 df-pr 3601 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
2 iuneq1 3901 . . . 4 ({𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶)
31, 2ax-mp 5 . . 3 𝑥 ∈ {𝐴, 𝐵}𝐶 = 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶
4 iunxun 3968 . . 3 𝑥 ∈ ({𝐴} ∪ {𝐵})𝐶 = ( 𝑥 ∈ {𝐴}𝐶 𝑥 ∈ {𝐵}𝐶)
53, 4eqtri 2198 . 2 𝑥 ∈ {𝐴, 𝐵}𝐶 = ( 𝑥 ∈ {𝐴}𝐶 𝑥 ∈ {𝐵}𝐶)
6 iunxprg.1 . . . . 5 (𝑥 = 𝐴𝐶 = 𝐷)
76iunxsng 3964 . . . 4 (𝐴𝑉 𝑥 ∈ {𝐴}𝐶 = 𝐷)
87adantr 276 . . 3 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴}𝐶 = 𝐷)
9 iunxprg.2 . . . . 5 (𝑥 = 𝐵𝐶 = 𝐸)
109iunxsng 3964 . . . 4 (𝐵𝑊 𝑥 ∈ {𝐵}𝐶 = 𝐸)
1110adantl 277 . . 3 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐵}𝐶 = 𝐸)
128, 11uneq12d 3292 . 2 ((𝐴𝑉𝐵𝑊) → ( 𝑥 ∈ {𝐴}𝐶 𝑥 ∈ {𝐵}𝐶) = (𝐷𝐸))
135, 12eqtrid 2222 1 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cun 3129  {csn 3594  {cpr 3595   ciun 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-iun 3890
This theorem is referenced by:  unct  12445
  Copyright terms: Public domain W3C validator