ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunfidisj GIF version

Theorem iunfidisj 7074
Description: The finite union of disjoint finite sets is finite. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.)
Assertion
Ref Expression
iunfidisj ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunfidisj
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 3954 . . 3 (𝑤 = ∅ → 𝑥𝑤 𝐵 = 𝑥 ∈ ∅ 𝐵)
21eleq1d 2276 . 2 (𝑤 = ∅ → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥 ∈ ∅ 𝐵 ∈ Fin))
3 iuneq1 3954 . . 3 (𝑤 = 𝑦 𝑥𝑤 𝐵 = 𝑥𝑦 𝐵)
43eleq1d 2276 . 2 (𝑤 = 𝑦 → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥𝑦 𝐵 ∈ Fin))
5 iuneq1 3954 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → 𝑥𝑤 𝐵 = 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
65eleq1d 2276 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))
7 iuneq1 3954 . . 3 (𝑤 = 𝐴 𝑥𝑤 𝐵 = 𝑥𝐴 𝐵)
87eleq1d 2276 . 2 (𝑤 = 𝐴 → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥𝐴 𝐵 ∈ Fin))
9 0iun 3999 . . . 4 𝑥 ∈ ∅ 𝐵 = ∅
10 0fin 7007 . . . 4 ∅ ∈ Fin
119, 10eqeltri 2280 . . 3 𝑥 ∈ ∅ 𝐵 ∈ Fin
1211a1i 9 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝑥 ∈ ∅ 𝐵 ∈ Fin)
13 iunxun 4021 . . . 4 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵)
14 simpr 110 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑥𝑦 𝐵 ∈ Fin)
15 nfcsb1v 3134 . . . . . . . 8 𝑥𝑧 / 𝑥𝐵
16 csbeq1a 3110 . . . . . . . 8 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
1715, 16iunxsngf 4019 . . . . . . 7 (𝑧 ∈ V → 𝑥 ∈ {𝑧}𝐵 = 𝑧 / 𝑥𝐵)
1817elv 2780 . . . . . 6 𝑥 ∈ {𝑧}𝐵 = 𝑧 / 𝑥𝐵
19 simplrr 536 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑧 ∈ (𝐴𝑦))
2019eldifad 3185 . . . . . . 7 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑧𝐴)
21 simpll2 1040 . . . . . . 7 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → ∀𝑥𝐴 𝐵 ∈ Fin)
2215nfel1 2361 . . . . . . . 8 𝑥𝑧 / 𝑥𝐵 ∈ Fin
2316eleq1d 2276 . . . . . . . 8 (𝑥 = 𝑧 → (𝐵 ∈ Fin ↔ 𝑧 / 𝑥𝐵 ∈ Fin))
2422, 23rspc 2878 . . . . . . 7 (𝑧𝐴 → (∀𝑥𝐴 𝐵 ∈ Fin → 𝑧 / 𝑥𝐵 ∈ Fin))
2520, 21, 24sylc 62 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑧 / 𝑥𝐵 ∈ Fin)
2618, 25eqeltrid 2294 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑥 ∈ {𝑧}𝐵 ∈ Fin)
27 simpll3 1041 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → Disj 𝑥𝐴 𝐵)
28 simplrl 535 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑦𝐴)
2920snssd 3789 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → {𝑧} ⊆ 𝐴)
3019eldifbd 3186 . . . . . . 7 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → ¬ 𝑧𝑦)
31 disjsn 3705 . . . . . . 7 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
3230, 31sylibr 134 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → (𝑦 ∩ {𝑧}) = ∅)
33 disjiun 4054 . . . . . 6 ((Disj 𝑥𝐴 𝐵 ∧ (𝑦𝐴 ∧ {𝑧} ⊆ 𝐴 ∧ (𝑦 ∩ {𝑧}) = ∅)) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) = ∅)
3427, 28, 29, 32, 33syl13anc 1252 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) = ∅)
35 unfidisj 7045 . . . . 5 (( 𝑥𝑦 𝐵 ∈ Fin ∧ 𝑥 ∈ {𝑧}𝐵 ∈ Fin ∧ ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) = ∅) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ Fin)
3614, 26, 34, 35syl3anc 1250 . . . 4 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ Fin)
3713, 36eqeltrid 2294 . . 3 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)
3837ex 115 . 2 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ( 𝑥𝑦 𝐵 ∈ Fin → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))
39 simp1 1000 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝐴 ∈ Fin)
402, 4, 6, 8, 12, 38, 39findcard2d 7014 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2178  wral 2486  Vcvv 2776  csb 3101  cdif 3171  cun 3172  cin 3173  wss 3174  c0 3468  {csn 3643   ciun 3941  Disj wdisj 4035  Fincfn 6850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-disj 4036  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1o 6525  df-er 6643  df-en 6851  df-fin 6853
This theorem is referenced by:  fsum2dlemstep  11860  fisumcom2  11864  fsumiun  11903  hashiun  11904  hash2iun  11905  fprod2dlemstep  12048  fprodcom2fi  12052
  Copyright terms: Public domain W3C validator