ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunfidisj GIF version

Theorem iunfidisj 7021
Description: The finite union of disjoint finite sets is finite. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.)
Assertion
Ref Expression
iunfidisj ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunfidisj
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 3930 . . 3 (𝑤 = ∅ → 𝑥𝑤 𝐵 = 𝑥 ∈ ∅ 𝐵)
21eleq1d 2265 . 2 (𝑤 = ∅ → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥 ∈ ∅ 𝐵 ∈ Fin))
3 iuneq1 3930 . . 3 (𝑤 = 𝑦 𝑥𝑤 𝐵 = 𝑥𝑦 𝐵)
43eleq1d 2265 . 2 (𝑤 = 𝑦 → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥𝑦 𝐵 ∈ Fin))
5 iuneq1 3930 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → 𝑥𝑤 𝐵 = 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
65eleq1d 2265 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))
7 iuneq1 3930 . . 3 (𝑤 = 𝐴 𝑥𝑤 𝐵 = 𝑥𝐴 𝐵)
87eleq1d 2265 . 2 (𝑤 = 𝐴 → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥𝐴 𝐵 ∈ Fin))
9 0iun 3975 . . . 4 𝑥 ∈ ∅ 𝐵 = ∅
10 0fin 6954 . . . 4 ∅ ∈ Fin
119, 10eqeltri 2269 . . 3 𝑥 ∈ ∅ 𝐵 ∈ Fin
1211a1i 9 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝑥 ∈ ∅ 𝐵 ∈ Fin)
13 iunxun 3997 . . . 4 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵)
14 simpr 110 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑥𝑦 𝐵 ∈ Fin)
15 nfcsb1v 3117 . . . . . . . 8 𝑥𝑧 / 𝑥𝐵
16 csbeq1a 3093 . . . . . . . 8 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
1715, 16iunxsngf 3995 . . . . . . 7 (𝑧 ∈ V → 𝑥 ∈ {𝑧}𝐵 = 𝑧 / 𝑥𝐵)
1817elv 2767 . . . . . 6 𝑥 ∈ {𝑧}𝐵 = 𝑧 / 𝑥𝐵
19 simplrr 536 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑧 ∈ (𝐴𝑦))
2019eldifad 3168 . . . . . . 7 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑧𝐴)
21 simpll2 1039 . . . . . . 7 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → ∀𝑥𝐴 𝐵 ∈ Fin)
2215nfel1 2350 . . . . . . . 8 𝑥𝑧 / 𝑥𝐵 ∈ Fin
2316eleq1d 2265 . . . . . . . 8 (𝑥 = 𝑧 → (𝐵 ∈ Fin ↔ 𝑧 / 𝑥𝐵 ∈ Fin))
2422, 23rspc 2862 . . . . . . 7 (𝑧𝐴 → (∀𝑥𝐴 𝐵 ∈ Fin → 𝑧 / 𝑥𝐵 ∈ Fin))
2520, 21, 24sylc 62 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑧 / 𝑥𝐵 ∈ Fin)
2618, 25eqeltrid 2283 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑥 ∈ {𝑧}𝐵 ∈ Fin)
27 simpll3 1040 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → Disj 𝑥𝐴 𝐵)
28 simplrl 535 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑦𝐴)
2920snssd 3768 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → {𝑧} ⊆ 𝐴)
3019eldifbd 3169 . . . . . . 7 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → ¬ 𝑧𝑦)
31 disjsn 3685 . . . . . . 7 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
3230, 31sylibr 134 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → (𝑦 ∩ {𝑧}) = ∅)
33 disjiun 4029 . . . . . 6 ((Disj 𝑥𝐴 𝐵 ∧ (𝑦𝐴 ∧ {𝑧} ⊆ 𝐴 ∧ (𝑦 ∩ {𝑧}) = ∅)) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) = ∅)
3427, 28, 29, 32, 33syl13anc 1251 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) = ∅)
35 unfidisj 6992 . . . . 5 (( 𝑥𝑦 𝐵 ∈ Fin ∧ 𝑥 ∈ {𝑧}𝐵 ∈ Fin ∧ ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) = ∅) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ Fin)
3614, 26, 34, 35syl3anc 1249 . . . 4 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ Fin)
3713, 36eqeltrid 2283 . . 3 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)
3837ex 115 . 2 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ( 𝑥𝑦 𝐵 ∈ Fin → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))
39 simp1 999 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝐴 ∈ Fin)
402, 4, 6, 8, 12, 38, 39findcard2d 6961 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  csb 3084  cdif 3154  cun 3155  cin 3156  wss 3157  c0 3451  {csn 3623   ciun 3917  Disj wdisj 4011  Fincfn 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1o 6483  df-er 6601  df-en 6809  df-fin 6811
This theorem is referenced by:  fsum2dlemstep  11616  fisumcom2  11620  fsumiun  11659  hashiun  11660  hash2iun  11661  fprod2dlemstep  11804  fprodcom2fi  11808
  Copyright terms: Public domain W3C validator