ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunfidisj GIF version

Theorem iunfidisj 7005
Description: The finite union of disjoint finite sets is finite. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Revised by Jim Kingdon, 7-Oct-2022.)
Assertion
Ref Expression
iunfidisj ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunfidisj
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 3925 . . 3 (𝑤 = ∅ → 𝑥𝑤 𝐵 = 𝑥 ∈ ∅ 𝐵)
21eleq1d 2262 . 2 (𝑤 = ∅ → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥 ∈ ∅ 𝐵 ∈ Fin))
3 iuneq1 3925 . . 3 (𝑤 = 𝑦 𝑥𝑤 𝐵 = 𝑥𝑦 𝐵)
43eleq1d 2262 . 2 (𝑤 = 𝑦 → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥𝑦 𝐵 ∈ Fin))
5 iuneq1 3925 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → 𝑥𝑤 𝐵 = 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
65eleq1d 2262 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))
7 iuneq1 3925 . . 3 (𝑤 = 𝐴 𝑥𝑤 𝐵 = 𝑥𝐴 𝐵)
87eleq1d 2262 . 2 (𝑤 = 𝐴 → ( 𝑥𝑤 𝐵 ∈ Fin ↔ 𝑥𝐴 𝐵 ∈ Fin))
9 0iun 3970 . . . 4 𝑥 ∈ ∅ 𝐵 = ∅
10 0fin 6940 . . . 4 ∅ ∈ Fin
119, 10eqeltri 2266 . . 3 𝑥 ∈ ∅ 𝐵 ∈ Fin
1211a1i 9 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝑥 ∈ ∅ 𝐵 ∈ Fin)
13 iunxun 3992 . . . 4 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵)
14 simpr 110 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑥𝑦 𝐵 ∈ Fin)
15 nfcsb1v 3113 . . . . . . . 8 𝑥𝑧 / 𝑥𝐵
16 csbeq1a 3089 . . . . . . . 8 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
1715, 16iunxsngf 3990 . . . . . . 7 (𝑧 ∈ V → 𝑥 ∈ {𝑧}𝐵 = 𝑧 / 𝑥𝐵)
1817elv 2764 . . . . . 6 𝑥 ∈ {𝑧}𝐵 = 𝑧 / 𝑥𝐵
19 simplrr 536 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑧 ∈ (𝐴𝑦))
2019eldifad 3164 . . . . . . 7 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑧𝐴)
21 simpll2 1039 . . . . . . 7 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → ∀𝑥𝐴 𝐵 ∈ Fin)
2215nfel1 2347 . . . . . . . 8 𝑥𝑧 / 𝑥𝐵 ∈ Fin
2316eleq1d 2262 . . . . . . . 8 (𝑥 = 𝑧 → (𝐵 ∈ Fin ↔ 𝑧 / 𝑥𝐵 ∈ Fin))
2422, 23rspc 2858 . . . . . . 7 (𝑧𝐴 → (∀𝑥𝐴 𝐵 ∈ Fin → 𝑧 / 𝑥𝐵 ∈ Fin))
2520, 21, 24sylc 62 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑧 / 𝑥𝐵 ∈ Fin)
2618, 25eqeltrid 2280 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑥 ∈ {𝑧}𝐵 ∈ Fin)
27 simpll3 1040 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → Disj 𝑥𝐴 𝐵)
28 simplrl 535 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑦𝐴)
2920snssd 3763 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → {𝑧} ⊆ 𝐴)
3019eldifbd 3165 . . . . . . 7 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → ¬ 𝑧𝑦)
31 disjsn 3680 . . . . . . 7 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
3230, 31sylibr 134 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → (𝑦 ∩ {𝑧}) = ∅)
33 disjiun 4024 . . . . . 6 ((Disj 𝑥𝐴 𝐵 ∧ (𝑦𝐴 ∧ {𝑧} ⊆ 𝐴 ∧ (𝑦 ∩ {𝑧}) = ∅)) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) = ∅)
3427, 28, 29, 32, 33syl13anc 1251 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) = ∅)
35 unfidisj 6978 . . . . 5 (( 𝑥𝑦 𝐵 ∈ Fin ∧ 𝑥 ∈ {𝑧}𝐵 ∈ Fin ∧ ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) = ∅) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ Fin)
3614, 26, 34, 35syl3anc 1249 . . . 4 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ Fin)
3713, 36eqeltrid 2280 . . 3 ((((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ Fin) → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin)
3837ex 115 . 2 (((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ( 𝑥𝑦 𝐵 ∈ Fin → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ Fin))
39 simp1 999 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝐴 ∈ Fin)
402, 4, 6, 8, 12, 38, 39findcard2d 6947 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ Fin ∧ Disj 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  csb 3080  cdif 3150  cun 3151  cin 3152  wss 3153  c0 3446  {csn 3618   ciun 3912  Disj wdisj 4006  Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469  df-er 6587  df-en 6795  df-fin 6797
This theorem is referenced by:  fsum2dlemstep  11577  fisumcom2  11581  fsumiun  11620  hashiun  11621  hash2iun  11622  fprod2dlemstep  11765  fprodcom2fi  11769
  Copyright terms: Public domain W3C validator