ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuncld GIF version

Theorem iuncld 12656
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by Jim Kingdon, 10-Mar-2023.)
Hypothesis
Ref Expression
iuncld.1 𝑋 = 𝐽
Assertion
Ref Expression
iuncld ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑋(𝑥)

Proof of Theorem iuncld
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 3873 . . 3 (𝑤 = ∅ → 𝑥𝑤 𝐵 = 𝑥 ∈ ∅ 𝐵)
21eleq1d 2233 . 2 (𝑤 = ∅ → ( 𝑥𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ 𝑥 ∈ ∅ 𝐵 ∈ (Clsd‘𝐽)))
3 iuneq1 3873 . . 3 (𝑤 = 𝑦 𝑥𝑤 𝐵 = 𝑥𝑦 𝐵)
43eleq1d 2233 . 2 (𝑤 = 𝑦 → ( 𝑥𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽)))
5 iuneq1 3873 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → 𝑥𝑤 𝐵 = 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
65eleq1d 2233 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ( 𝑥𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽)))
7 iuneq1 3873 . . 3 (𝑤 = 𝐴 𝑥𝑤 𝐵 = 𝑥𝐴 𝐵)
87eleq1d 2233 . 2 (𝑤 = 𝐴 → ( 𝑥𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)))
9 0iun 3917 . . . 4 𝑥 ∈ ∅ 𝐵 = ∅
10 0cld 12653 . . . 4 (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
119, 10eqeltrid 2251 . . 3 (𝐽 ∈ Top → 𝑥 ∈ ∅ 𝐵 ∈ (Clsd‘𝐽))
12113ad2ant1 1007 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥 ∈ ∅ 𝐵 ∈ (Clsd‘𝐽))
13 simpr 109 . . . 4 (((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽))
14 nfcsb1v 3073 . . . . . . . 8 𝑥𝑧 / 𝑥𝐵
15 csbeq1a 3049 . . . . . . . 8 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
1614, 15iunxsngf 3937 . . . . . . 7 (𝑧 ∈ V → 𝑥 ∈ {𝑧}𝐵 = 𝑧 / 𝑥𝐵)
1716elv 2725 . . . . . 6 𝑥 ∈ {𝑧}𝐵 = 𝑧 / 𝑥𝐵
18 simprr 522 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
1918eldifad 3122 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
20 simpll3 1027 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
2114nfel1 2317 . . . . . . . 8 𝑥𝑧 / 𝑥𝐵 ∈ (Clsd‘𝐽)
2215eleq1d 2233 . . . . . . . 8 (𝑥 = 𝑧 → (𝐵 ∈ (Clsd‘𝐽) ↔ 𝑧 / 𝑥𝐵 ∈ (Clsd‘𝐽)))
2321, 22rspc 2819 . . . . . . 7 (𝑧𝐴 → (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → 𝑧 / 𝑥𝐵 ∈ (Clsd‘𝐽)))
2419, 20, 23sylc 62 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑥𝐵 ∈ (Clsd‘𝐽))
2517, 24eqeltrid 2251 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽))
2625adantr 274 . . . 4 (((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽)) → 𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽))
27 iunxun 3939 . . . . 5 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵)
28 uncld 12654 . . . . 5 (( 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽)) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ (Clsd‘𝐽))
2927, 28eqeltrid 2251 . . . 4 (( 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽))
3013, 26, 29syl2anc 409 . . 3 (((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽))
3130ex 114 . 2 ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ( 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽) → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽)))
32 simp2 987 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐴 ∈ Fin)
332, 4, 6, 8, 12, 31, 32findcard2sd 6849 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 967   = wceq 1342  wcel 2135  wral 2442  Vcvv 2721  csb 3040  cdif 3108  cun 3109  wss 3111  c0 3404  {csn 3570   cuni 3783   ciun 3860  cfv 5182  Fincfn 6697  Topctop 12536  Clsdccld 12633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-er 6492  df-en 6698  df-fin 6700  df-top 12537  df-cld 12636
This theorem is referenced by:  unicld  12657
  Copyright terms: Public domain W3C validator