ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuncld GIF version

Theorem iuncld 14783
Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by Jim Kingdon, 10-Mar-2023.)
Hypothesis
Ref Expression
iuncld.1 𝑋 = 𝐽
Assertion
Ref Expression
iuncld ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑋(𝑥)

Proof of Theorem iuncld
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iuneq1 3977 . . 3 (𝑤 = ∅ → 𝑥𝑤 𝐵 = 𝑥 ∈ ∅ 𝐵)
21eleq1d 2298 . 2 (𝑤 = ∅ → ( 𝑥𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ 𝑥 ∈ ∅ 𝐵 ∈ (Clsd‘𝐽)))
3 iuneq1 3977 . . 3 (𝑤 = 𝑦 𝑥𝑤 𝐵 = 𝑥𝑦 𝐵)
43eleq1d 2298 . 2 (𝑤 = 𝑦 → ( 𝑥𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽)))
5 iuneq1 3977 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → 𝑥𝑤 𝐵 = 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵)
65eleq1d 2298 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ( 𝑥𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽)))
7 iuneq1 3977 . . 3 (𝑤 = 𝐴 𝑥𝑤 𝐵 = 𝑥𝐴 𝐵)
87eleq1d 2298 . 2 (𝑤 = 𝐴 → ( 𝑥𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)))
9 0iun 4022 . . . 4 𝑥 ∈ ∅ 𝐵 = ∅
10 0cld 14780 . . . 4 (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
119, 10eqeltrid 2316 . . 3 (𝐽 ∈ Top → 𝑥 ∈ ∅ 𝐵 ∈ (Clsd‘𝐽))
12113ad2ant1 1042 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥 ∈ ∅ 𝐵 ∈ (Clsd‘𝐽))
13 simpr 110 . . . 4 (((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽))
14 nfcsb1v 3157 . . . . . . . 8 𝑥𝑧 / 𝑥𝐵
15 csbeq1a 3133 . . . . . . . 8 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
1614, 15iunxsngf 4042 . . . . . . 7 (𝑧 ∈ V → 𝑥 ∈ {𝑧}𝐵 = 𝑧 / 𝑥𝐵)
1716elv 2803 . . . . . 6 𝑥 ∈ {𝑧}𝐵 = 𝑧 / 𝑥𝐵
18 simprr 531 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
1918eldifad 3208 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
20 simpll3 1062 . . . . . . 7 ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
2114nfel1 2383 . . . . . . . 8 𝑥𝑧 / 𝑥𝐵 ∈ (Clsd‘𝐽)
2215eleq1d 2298 . . . . . . . 8 (𝑥 = 𝑧 → (𝐵 ∈ (Clsd‘𝐽) ↔ 𝑧 / 𝑥𝐵 ∈ (Clsd‘𝐽)))
2321, 22rspc 2901 . . . . . . 7 (𝑧𝐴 → (∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽) → 𝑧 / 𝑥𝐵 ∈ (Clsd‘𝐽)))
2419, 20, 23sylc 62 . . . . . 6 ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑥𝐵 ∈ (Clsd‘𝐽))
2517, 24eqeltrid 2316 . . . . 5 ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽))
2625adantr 276 . . . 4 (((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽)) → 𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽))
27 iunxun 4044 . . . . 5 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵)
28 uncld 14781 . . . . 5 (( 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽)) → ( 𝑥𝑦 𝐵 𝑥 ∈ {𝑧}𝐵) ∈ (Clsd‘𝐽))
2927, 28eqeltrid 2316 . . . 4 (( 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽) ∧ 𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽))
3013, 26, 29syl2anc 411 . . 3 (((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽)) → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽))
3130ex 115 . 2 ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ( 𝑥𝑦 𝐵 ∈ (Clsd‘𝐽) → 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽)))
32 simp2 1022 . 2 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐴 ∈ Fin)
332, 4, 6, 8, 12, 31, 32findcard2sd 7050 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝑥𝐴 𝐵 ∈ (Clsd‘𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  csb 3124  cdif 3194  cun 3195  wss 3197  c0 3491  {csn 3666   cuni 3887   ciun 3964  cfv 5317  Fincfn 6885  Topctop 14665  Clsdccld 14760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-er 6678  df-en 6886  df-fin 6888  df-top 14666  df-cld 14763
This theorem is referenced by:  unicld  14784
  Copyright terms: Public domain W3C validator