| Step | Hyp | Ref
| Expression |
| 1 | | iuneq1 3929 |
. . 3
⊢ (𝑤 = ∅ → ∪ 𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ ∅ 𝐵) |
| 2 | 1 | eleq1d 2265 |
. 2
⊢ (𝑤 = ∅ → (∪ 𝑥 ∈ 𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ ∪
𝑥 ∈ ∅ 𝐵 ∈ (Clsd‘𝐽))) |
| 3 | | iuneq1 3929 |
. . 3
⊢ (𝑤 = 𝑦 → ∪
𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ 𝑦 𝐵) |
| 4 | 3 | eleq1d 2265 |
. 2
⊢ (𝑤 = 𝑦 → (∪
𝑥 ∈ 𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ ∪
𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽))) |
| 5 | | iuneq1 3929 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ∪
𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) |
| 6 | 5 | eleq1d 2265 |
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∪ 𝑥 ∈ 𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ ∪
𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽))) |
| 7 | | iuneq1 3929 |
. . 3
⊢ (𝑤 = 𝐴 → ∪
𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵) |
| 8 | 7 | eleq1d 2265 |
. 2
⊢ (𝑤 = 𝐴 → (∪
𝑥 ∈ 𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ ∪
𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽))) |
| 9 | | 0iun 3974 |
. . . 4
⊢ ∪ 𝑥 ∈ ∅ 𝐵 = ∅ |
| 10 | | 0cld 14348 |
. . . 4
⊢ (𝐽 ∈ Top → ∅
∈ (Clsd‘𝐽)) |
| 11 | 9, 10 | eqeltrid 2283 |
. . 3
⊢ (𝐽 ∈ Top → ∪ 𝑥 ∈ ∅ 𝐵 ∈ (Clsd‘𝐽)) |
| 12 | 11 | 3ad2ant1 1020 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ ∅ 𝐵 ∈ (Clsd‘𝐽)) |
| 13 | | simpr 110 |
. . . 4
⊢
(((((𝐽 ∈ Top
∧ 𝐴 ∈ Fin ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∪
𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽)) |
| 14 | | nfcsb1v 3117 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 |
| 15 | | csbeq1a 3093 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
| 16 | 14, 15 | iunxsngf 3994 |
. . . . . . 7
⊢ (𝑧 ∈ V → ∪ 𝑥 ∈ {𝑧}𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
| 17 | 16 | elv 2767 |
. . . . . 6
⊢ ∪ 𝑥 ∈ {𝑧}𝐵 = ⦋𝑧 / 𝑥⦌𝐵 |
| 18 | | simprr 531 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
| 19 | 18 | eldifad 3168 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ 𝐴) |
| 20 | | simpll3 1040 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
| 21 | 14 | nfel1 2350 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 ∈ (Clsd‘𝐽) |
| 22 | 15 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝐵 ∈ (Clsd‘𝐽) ↔ ⦋𝑧 / 𝑥⦌𝐵 ∈ (Clsd‘𝐽))) |
| 23 | 21, 22 | rspc 2862 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽) → ⦋𝑧 / 𝑥⦌𝐵 ∈ (Clsd‘𝐽))) |
| 24 | 19, 20, 23 | sylc 62 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑧 / 𝑥⦌𝐵 ∈ (Clsd‘𝐽)) |
| 25 | 17, 24 | eqeltrid 2283 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∪ 𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽)) |
| 26 | 25 | adantr 276 |
. . . 4
⊢
(((((𝐽 ∈ Top
∧ 𝐴 ∈ Fin ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∪
𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽)) |
| 27 | | iunxun 3996 |
. . . . 5
⊢ ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = (∪
𝑥 ∈ 𝑦 𝐵 ∪ ∪
𝑥 ∈ {𝑧}𝐵) |
| 28 | | uncld 14349 |
. . . . 5
⊢
((∪ 𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽) ∧ ∪
𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽)) → (∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪
𝑥 ∈ {𝑧}𝐵) ∈ (Clsd‘𝐽)) |
| 29 | 27, 28 | eqeltrid 2283 |
. . . 4
⊢
((∪ 𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽) ∧ ∪
𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽)) |
| 30 | 13, 26, 29 | syl2anc 411 |
. . 3
⊢
(((((𝐽 ∈ Top
∧ 𝐴 ∈ Fin ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∪
𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽)) |
| 31 | 30 | ex 115 |
. 2
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (∪ 𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽) → ∪
𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽))) |
| 32 | | simp2 1000 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐴 ∈ Fin) |
| 33 | 2, 4, 6, 8, 12, 31, 32 | findcard2sd 6953 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |