Step | Hyp | Ref
| Expression |
1 | | iuneq1 3886 |
. . 3
⊢ (𝑤 = ∅ → ∪ 𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ ∅ 𝐵) |
2 | 1 | eleq1d 2239 |
. 2
⊢ (𝑤 = ∅ → (∪ 𝑥 ∈ 𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ ∪
𝑥 ∈ ∅ 𝐵 ∈ (Clsd‘𝐽))) |
3 | | iuneq1 3886 |
. . 3
⊢ (𝑤 = 𝑦 → ∪
𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ 𝑦 𝐵) |
4 | 3 | eleq1d 2239 |
. 2
⊢ (𝑤 = 𝑦 → (∪
𝑥 ∈ 𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ ∪
𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽))) |
5 | | iuneq1 3886 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ∪
𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵) |
6 | 5 | eleq1d 2239 |
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (∪ 𝑥 ∈ 𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ ∪
𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽))) |
7 | | iuneq1 3886 |
. . 3
⊢ (𝑤 = 𝐴 → ∪
𝑥 ∈ 𝑤 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐵) |
8 | 7 | eleq1d 2239 |
. 2
⊢ (𝑤 = 𝐴 → (∪
𝑥 ∈ 𝑤 𝐵 ∈ (Clsd‘𝐽) ↔ ∪
𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽))) |
9 | | 0iun 3930 |
. . . 4
⊢ ∪ 𝑥 ∈ ∅ 𝐵 = ∅ |
10 | | 0cld 12906 |
. . . 4
⊢ (𝐽 ∈ Top → ∅
∈ (Clsd‘𝐽)) |
11 | 9, 10 | eqeltrid 2257 |
. . 3
⊢ (𝐽 ∈ Top → ∪ 𝑥 ∈ ∅ 𝐵 ∈ (Clsd‘𝐽)) |
12 | 11 | 3ad2ant1 1013 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ ∅ 𝐵 ∈ (Clsd‘𝐽)) |
13 | | simpr 109 |
. . . 4
⊢
(((((𝐽 ∈ Top
∧ 𝐴 ∈ Fin ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∪
𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽)) |
14 | | nfcsb1v 3082 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 |
15 | | csbeq1a 3058 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
16 | 14, 15 | iunxsngf 3950 |
. . . . . . 7
⊢ (𝑧 ∈ V → ∪ 𝑥 ∈ {𝑧}𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
17 | 16 | elv 2734 |
. . . . . 6
⊢ ∪ 𝑥 ∈ {𝑧}𝐵 = ⦋𝑧 / 𝑥⦌𝐵 |
18 | | simprr 527 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
19 | 18 | eldifad 3132 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ 𝐴) |
20 | | simpll3 1033 |
. . . . . . 7
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |
21 | 14 | nfel1 2323 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 ∈ (Clsd‘𝐽) |
22 | 15 | eleq1d 2239 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝐵 ∈ (Clsd‘𝐽) ↔ ⦋𝑧 / 𝑥⦌𝐵 ∈ (Clsd‘𝐽))) |
23 | 21, 22 | rspc 2828 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽) → ⦋𝑧 / 𝑥⦌𝐵 ∈ (Clsd‘𝐽))) |
24 | 19, 20, 23 | sylc 62 |
. . . . . 6
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ⦋𝑧 / 𝑥⦌𝐵 ∈ (Clsd‘𝐽)) |
25 | 17, 24 | eqeltrid 2257 |
. . . . 5
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ∪ 𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽)) |
26 | 25 | adantr 274 |
. . . 4
⊢
(((((𝐽 ∈ Top
∧ 𝐴 ∈ Fin ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∪
𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽)) |
27 | | iunxun 3952 |
. . . . 5
⊢ ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 = (∪
𝑥 ∈ 𝑦 𝐵 ∪ ∪
𝑥 ∈ {𝑧}𝐵) |
28 | | uncld 12907 |
. . . . 5
⊢
((∪ 𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽) ∧ ∪
𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽)) → (∪ 𝑥 ∈ 𝑦 𝐵 ∪ ∪
𝑥 ∈ {𝑧}𝐵) ∈ (Clsd‘𝐽)) |
29 | 27, 28 | eqeltrid 2257 |
. . . 4
⊢
((∪ 𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽) ∧ ∪
𝑥 ∈ {𝑧}𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽)) |
30 | 13, 26, 29 | syl2anc 409 |
. . 3
⊢
(((((𝐽 ∈ Top
∧ 𝐴 ∈ Fin ∧
∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ ∪
𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽)) |
31 | 30 | ex 114 |
. 2
⊢ ((((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (∪ 𝑥 ∈ 𝑦 𝐵 ∈ (Clsd‘𝐽) → ∪
𝑥 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ (Clsd‘𝐽))) |
32 | | simp2 993 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → 𝐴 ∈ Fin) |
33 | 2, 4, 6, 8, 12, 31, 32 | findcard2sd 6870 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) |