| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidrideqd | GIF version | ||
| Description: If there is a left and right identity element for any binary operation (group operation) +, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.) |
| Ref | Expression |
|---|---|
| lidrideqd.l | ⊢ (𝜑 → 𝐿 ∈ 𝐵) |
| lidrideqd.r | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
| lidrideqd.li | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) |
| lidrideqd.ri | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) |
| Ref | Expression |
|---|---|
| lidrideqd | ⊢ (𝜑 → 𝐿 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5929 | . . . 4 ⊢ (𝑥 = 𝐿 → (𝑥 + 𝑅) = (𝐿 + 𝑅)) | |
| 2 | id 19 | . . . 4 ⊢ (𝑥 = 𝐿 → 𝑥 = 𝐿) | |
| 3 | 1, 2 | eqeq12d 2211 | . . 3 ⊢ (𝑥 = 𝐿 → ((𝑥 + 𝑅) = 𝑥 ↔ (𝐿 + 𝑅) = 𝐿)) |
| 4 | lidrideqd.ri | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) | |
| 5 | lidrideqd.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ 𝐵) | |
| 6 | 3, 4, 5 | rspcdva 2873 | . 2 ⊢ (𝜑 → (𝐿 + 𝑅) = 𝐿) |
| 7 | oveq2 5930 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝐿 + 𝑥) = (𝐿 + 𝑅)) | |
| 8 | id 19 | . . . 4 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
| 9 | 7, 8 | eqeq12d 2211 | . . 3 ⊢ (𝑥 = 𝑅 → ((𝐿 + 𝑥) = 𝑥 ↔ (𝐿 + 𝑅) = 𝑅)) |
| 10 | lidrideqd.li | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) | |
| 11 | lidrideqd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
| 12 | 9, 10, 11 | rspcdva 2873 | . 2 ⊢ (𝜑 → (𝐿 + 𝑅) = 𝑅) |
| 13 | 6, 12 | eqtr3d 2231 | 1 ⊢ (𝜑 → 𝐿 = 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ∀wral 2475 (class class class)co 5922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: lidrididd 13025 |
| Copyright terms: Public domain | W3C validator |