ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidrideqd GIF version

Theorem lidrideqd 12635
Description: If there is a left and right identity element for any binary operation (group operation) +, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
lidrideqd.l (𝜑𝐿𝐵)
lidrideqd.r (𝜑𝑅𝐵)
lidrideqd.li (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)
lidrideqd.ri (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)
Assertion
Ref Expression
lidrideqd (𝜑𝐿 = 𝑅)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐿   𝑥,𝑅   𝑥, +
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem lidrideqd
StepHypRef Expression
1 oveq1 5860 . . . 4 (𝑥 = 𝐿 → (𝑥 + 𝑅) = (𝐿 + 𝑅))
2 id 19 . . . 4 (𝑥 = 𝐿𝑥 = 𝐿)
31, 2eqeq12d 2185 . . 3 (𝑥 = 𝐿 → ((𝑥 + 𝑅) = 𝑥 ↔ (𝐿 + 𝑅) = 𝐿))
4 lidrideqd.ri . . 3 (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)
5 lidrideqd.l . . 3 (𝜑𝐿𝐵)
63, 4, 5rspcdva 2839 . 2 (𝜑 → (𝐿 + 𝑅) = 𝐿)
7 oveq2 5861 . . . 4 (𝑥 = 𝑅 → (𝐿 + 𝑥) = (𝐿 + 𝑅))
8 id 19 . . . 4 (𝑥 = 𝑅𝑥 = 𝑅)
97, 8eqeq12d 2185 . . 3 (𝑥 = 𝑅 → ((𝐿 + 𝑥) = 𝑥 ↔ (𝐿 + 𝑅) = 𝑅))
10 lidrideqd.li . . 3 (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)
11 lidrideqd.r . . 3 (𝜑𝑅𝐵)
129, 10, 11rspcdva 2839 . 2 (𝜑 → (𝐿 + 𝑅) = 𝑅)
136, 12eqtr3d 2205 1 (𝜑𝐿 = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wral 2448  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  lidrididd  12636
  Copyright terms: Public domain W3C validator