![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lidrideqd | GIF version |
Description: If there is a left and right identity element for any binary operation (group operation) +, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.) |
Ref | Expression |
---|---|
lidrideqd.l | ⊢ (𝜑 → 𝐿 ∈ 𝐵) |
lidrideqd.r | ⊢ (𝜑 → 𝑅 ∈ 𝐵) |
lidrideqd.li | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) |
lidrideqd.ri | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) |
Ref | Expression |
---|---|
lidrideqd | ⊢ (𝜑 → 𝐿 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5925 | . . . 4 ⊢ (𝑥 = 𝐿 → (𝑥 + 𝑅) = (𝐿 + 𝑅)) | |
2 | id 19 | . . . 4 ⊢ (𝑥 = 𝐿 → 𝑥 = 𝐿) | |
3 | 1, 2 | eqeq12d 2208 | . . 3 ⊢ (𝑥 = 𝐿 → ((𝑥 + 𝑅) = 𝑥 ↔ (𝐿 + 𝑅) = 𝐿)) |
4 | lidrideqd.ri | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑅) = 𝑥) | |
5 | lidrideqd.l | . . 3 ⊢ (𝜑 → 𝐿 ∈ 𝐵) | |
6 | 3, 4, 5 | rspcdva 2869 | . 2 ⊢ (𝜑 → (𝐿 + 𝑅) = 𝐿) |
7 | oveq2 5926 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝐿 + 𝑥) = (𝐿 + 𝑅)) | |
8 | id 19 | . . . 4 ⊢ (𝑥 = 𝑅 → 𝑥 = 𝑅) | |
9 | 7, 8 | eqeq12d 2208 | . . 3 ⊢ (𝑥 = 𝑅 → ((𝐿 + 𝑥) = 𝑥 ↔ (𝐿 + 𝑅) = 𝑅)) |
10 | lidrideqd.li | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐿 + 𝑥) = 𝑥) | |
11 | lidrideqd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐵) | |
12 | 9, 10, 11 | rspcdva 2869 | . 2 ⊢ (𝜑 → (𝐿 + 𝑅) = 𝑅) |
13 | 6, 12 | eqtr3d 2228 | 1 ⊢ (𝜑 → 𝐿 = 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ∀wral 2472 (class class class)co 5918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: lidrididd 12965 |
Copyright terms: Public domain | W3C validator |