ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enwomnilem GIF version

Theorem enwomnilem 7186
Description: Lemma for enwomni 7187. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.)
Assertion
Ref Expression
enwomnilem (𝐴𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni))

Proof of Theorem enwomnilem
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6765 . . . . . . 7 (𝐴𝐵 ↔ ∃ :𝐴1-1-onto𝐵)
21biimpi 120 . . . . . 6 (𝐴𝐵 → ∃ :𝐴1-1-onto𝐵)
32ad2antrr 488 . . . . 5 (((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → ∃ :𝐴1-1-onto𝐵)
4 fveq1 5529 . . . . . . . . . 10 (𝑓 = (𝑔) → (𝑓𝑥) = ((𝑔)‘𝑥))
54eqeq1d 2198 . . . . . . . . 9 (𝑓 = (𝑔) → ((𝑓𝑥) = 1o ↔ ((𝑔)‘𝑥) = 1o))
65ralbidv 2490 . . . . . . . 8 (𝑓 = (𝑔) → (∀𝑥𝐴 (𝑓𝑥) = 1o ↔ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o))
76dcbid 839 . . . . . . 7 (𝑓 = (𝑔) → (DECID𝑥𝐴 (𝑓𝑥) = 1oDECID𝑥𝐴 ((𝑔)‘𝑥) = 1o))
8 iswomnimap 7183 . . . . . . . . 9 (𝐴 ∈ WOmni → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o))
98ibi 176 . . . . . . . 8 (𝐴 ∈ WOmni → ∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o)
109ad3antlr 493 . . . . . . 7 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → ∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o)
11 simpr 110 . . . . . . . . . . 11 (((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → 𝑔 ∈ (2o𝑚 𝐵))
12 2onn 6540 . . . . . . . . . . . . 13 2o ∈ ω
13 relen 6762 . . . . . . . . . . . . . 14 Rel ≈
1413brrelex2i 4685 . . . . . . . . . . . . 13 (𝐴𝐵𝐵 ∈ V)
15 elmapg 6679 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 𝐵 ∈ V) → (𝑔 ∈ (2o𝑚 𝐵) ↔ 𝑔:𝐵⟶2o))
1612, 14, 15sylancr 414 . . . . . . . . . . . 12 (𝐴𝐵 → (𝑔 ∈ (2o𝑚 𝐵) ↔ 𝑔:𝐵⟶2o))
1716ad2antrr 488 . . . . . . . . . . 11 (((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → (𝑔 ∈ (2o𝑚 𝐵) ↔ 𝑔:𝐵⟶2o))
1811, 17mpbid 147 . . . . . . . . . 10 (((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → 𝑔:𝐵⟶2o)
1918adantr 276 . . . . . . . . 9 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → 𝑔:𝐵⟶2o)
20 f1of 5476 . . . . . . . . . 10 (:𝐴1-1-onto𝐵:𝐴𝐵)
2120adantl 277 . . . . . . . . 9 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → :𝐴𝐵)
22 fco 5396 . . . . . . . . 9 ((𝑔:𝐵⟶2o:𝐴𝐵) → (𝑔):𝐴⟶2o)
2319, 21, 22syl2anc 411 . . . . . . . 8 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → (𝑔):𝐴⟶2o)
24 simpllr 534 . . . . . . . . 9 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → 𝐴 ∈ WOmni)
25 elmapg 6679 . . . . . . . . 9 ((2o ∈ ω ∧ 𝐴 ∈ WOmni) → ((𝑔) ∈ (2o𝑚 𝐴) ↔ (𝑔):𝐴⟶2o))
2612, 24, 25sylancr 414 . . . . . . . 8 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → ((𝑔) ∈ (2o𝑚 𝐴) ↔ (𝑔):𝐴⟶2o))
2723, 26mpbird 167 . . . . . . 7 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → (𝑔) ∈ (2o𝑚 𝐴))
287, 10, 27rspcdva 2861 . . . . . 6 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → DECID𝑥𝐴 ((𝑔)‘𝑥) = 1o)
29 f1ofn 5477 . . . . . . . . . . . 12 (:𝐴1-1-onto𝐵 Fn 𝐴)
3029ad3antlr 493 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → Fn 𝐴)
31 f1ocnv 5489 . . . . . . . . . . . . . 14 (:𝐴1-1-onto𝐵:𝐵1-1-onto𝐴)
32 f1of 5476 . . . . . . . . . . . . . 14 (:𝐵1-1-onto𝐴:𝐵𝐴)
3331, 32syl 14 . . . . . . . . . . . . 13 (:𝐴1-1-onto𝐵:𝐵𝐴)
3433ad3antlr 493 . . . . . . . . . . . 12 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → :𝐵𝐴)
35 simpr 110 . . . . . . . . . . . 12 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → 𝑦𝐵)
3634, 35ffvelcdmd 5668 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → (𝑦) ∈ 𝐴)
37 fvco2 5601 . . . . . . . . . . 11 (( Fn 𝐴 ∧ (𝑦) ∈ 𝐴) → ((𝑔)‘(𝑦)) = (𝑔‘(‘(𝑦))))
3830, 36, 37syl2anc 411 . . . . . . . . . 10 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → ((𝑔)‘(𝑦)) = (𝑔‘(‘(𝑦))))
39 fveqeq2 5539 . . . . . . . . . . 11 (𝑥 = (𝑦) → (((𝑔)‘𝑥) = 1o ↔ ((𝑔)‘(𝑦)) = 1o))
40 simplr 528 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o)
4139, 40, 36rspcdva 2861 . . . . . . . . . 10 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → ((𝑔)‘(𝑦)) = 1o)
42 f1ocnvfv2 5795 . . . . . . . . . . . 12 ((:𝐴1-1-onto𝐵𝑦𝐵) → (‘(𝑦)) = 𝑦)
4342fveq2d 5534 . . . . . . . . . . 11 ((:𝐴1-1-onto𝐵𝑦𝐵) → (𝑔‘(‘(𝑦))) = (𝑔𝑦))
4443ad4ant24 516 . . . . . . . . . 10 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → (𝑔‘(‘(𝑦))) = (𝑔𝑦))
4538, 41, 443eqtr3rd 2231 . . . . . . . . 9 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → (𝑔𝑦) = 1o)
4645ralrimiva 2563 . . . . . . . 8 (((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) → ∀𝑦𝐵 (𝑔𝑦) = 1o)
4729ad3antlr 493 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) ∧ 𝑥𝐴) → Fn 𝐴)
48 simpr 110 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) ∧ 𝑥𝐴) → 𝑥𝐴)
49 fvco2 5601 . . . . . . . . . . 11 (( Fn 𝐴𝑥𝐴) → ((𝑔)‘𝑥) = (𝑔‘(𝑥)))
5047, 48, 49syl2anc 411 . . . . . . . . . 10 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) ∧ 𝑥𝐴) → ((𝑔)‘𝑥) = (𝑔‘(𝑥)))
51 fveqeq2 5539 . . . . . . . . . . 11 (𝑦 = (𝑥) → ((𝑔𝑦) = 1o ↔ (𝑔‘(𝑥)) = 1o))
52 simplr 528 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) ∧ 𝑥𝐴) → ∀𝑦𝐵 (𝑔𝑦) = 1o)
5321ffvelcdmda 5667 . . . . . . . . . . . 12 (((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ 𝑥𝐴) → (𝑥) ∈ 𝐵)
5453adantlr 477 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) ∧ 𝑥𝐴) → (𝑥) ∈ 𝐵)
5551, 52, 54rspcdva 2861 . . . . . . . . . 10 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) ∧ 𝑥𝐴) → (𝑔‘(𝑥)) = 1o)
5650, 55eqtrd 2222 . . . . . . . . 9 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) ∧ 𝑥𝐴) → ((𝑔)‘𝑥) = 1o)
5756ralrimiva 2563 . . . . . . . 8 (((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) → ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o)
5846, 57impbida 596 . . . . . . 7 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → (∀𝑥𝐴 ((𝑔)‘𝑥) = 1o ↔ ∀𝑦𝐵 (𝑔𝑦) = 1o))
5958dcbid 839 . . . . . 6 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → (DECID𝑥𝐴 ((𝑔)‘𝑥) = 1oDECID𝑦𝐵 (𝑔𝑦) = 1o))
6028, 59mpbid 147 . . . . 5 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → DECID𝑦𝐵 (𝑔𝑦) = 1o)
613, 60exlimddv 1910 . . . 4 (((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → DECID𝑦𝐵 (𝑔𝑦) = 1o)
6261ralrimiva 2563 . . 3 ((𝐴𝐵𝐴 ∈ WOmni) → ∀𝑔 ∈ (2o𝑚 𝐵)DECID𝑦𝐵 (𝑔𝑦) = 1o)
63 iswomnimap 7183 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ WOmni ↔ ∀𝑔 ∈ (2o𝑚 𝐵)DECID𝑦𝐵 (𝑔𝑦) = 1o))
6414, 63syl 14 . . . 4 (𝐴𝐵 → (𝐵 ∈ WOmni ↔ ∀𝑔 ∈ (2o𝑚 𝐵)DECID𝑦𝐵 (𝑔𝑦) = 1o))
6564adantr 276 . . 3 ((𝐴𝐵𝐴 ∈ WOmni) → (𝐵 ∈ WOmni ↔ ∀𝑔 ∈ (2o𝑚 𝐵)DECID𝑦𝐵 (𝑔𝑦) = 1o))
6662, 65mpbird 167 . 2 ((𝐴𝐵𝐴 ∈ WOmni) → 𝐵 ∈ WOmni)
6766ex 115 1 (𝐴𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wex 1503  wcel 2160  wral 2468  Vcvv 2752   class class class wbr 4018  ωcom 4604  ccnv 4640  ccom 4645   Fn wfn 5226  wf 5227  1-1-ontowf1o 5230  cfv 5231  (class class class)co 5891  1oc1o 6428  2oc2o 6429  𝑚 cmap 6666  cen 6756  WOmnicwomni 7180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4308  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1o 6435  df-2o 6436  df-map 6668  df-en 6759  df-womni 7181
This theorem is referenced by:  enwomni  7187
  Copyright terms: Public domain W3C validator