ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enwomnilem GIF version

Theorem enwomnilem 7049
Description: Lemma for enwomni 7050. One direction of the biconditional. (Contributed by Jim Kingdon, 20-Jun-2024.)
Assertion
Ref Expression
enwomnilem (𝐴𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni))

Proof of Theorem enwomnilem
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6648 . . . . . . 7 (𝐴𝐵 ↔ ∃ :𝐴1-1-onto𝐵)
21biimpi 119 . . . . . 6 (𝐴𝐵 → ∃ :𝐴1-1-onto𝐵)
32ad2antrr 480 . . . . 5 (((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → ∃ :𝐴1-1-onto𝐵)
4 fveq1 5427 . . . . . . . . . 10 (𝑓 = (𝑔) → (𝑓𝑥) = ((𝑔)‘𝑥))
54eqeq1d 2149 . . . . . . . . 9 (𝑓 = (𝑔) → ((𝑓𝑥) = 1o ↔ ((𝑔)‘𝑥) = 1o))
65ralbidv 2438 . . . . . . . 8 (𝑓 = (𝑔) → (∀𝑥𝐴 (𝑓𝑥) = 1o ↔ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o))
76dcbid 824 . . . . . . 7 (𝑓 = (𝑔) → (DECID𝑥𝐴 (𝑓𝑥) = 1oDECID𝑥𝐴 ((𝑔)‘𝑥) = 1o))
8 iswomnimap 7047 . . . . . . . . 9 (𝐴 ∈ WOmni → (𝐴 ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o))
98ibi 175 . . . . . . . 8 (𝐴 ∈ WOmni → ∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o)
109ad3antlr 485 . . . . . . 7 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → ∀𝑓 ∈ (2o𝑚 𝐴)DECID𝑥𝐴 (𝑓𝑥) = 1o)
11 simpr 109 . . . . . . . . . . 11 (((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → 𝑔 ∈ (2o𝑚 𝐵))
12 2onn 6424 . . . . . . . . . . . . 13 2o ∈ ω
13 relen 6645 . . . . . . . . . . . . . 14 Rel ≈
1413brrelex2i 4590 . . . . . . . . . . . . 13 (𝐴𝐵𝐵 ∈ V)
15 elmapg 6562 . . . . . . . . . . . . 13 ((2o ∈ ω ∧ 𝐵 ∈ V) → (𝑔 ∈ (2o𝑚 𝐵) ↔ 𝑔:𝐵⟶2o))
1612, 14, 15sylancr 411 . . . . . . . . . . . 12 (𝐴𝐵 → (𝑔 ∈ (2o𝑚 𝐵) ↔ 𝑔:𝐵⟶2o))
1716ad2antrr 480 . . . . . . . . . . 11 (((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → (𝑔 ∈ (2o𝑚 𝐵) ↔ 𝑔:𝐵⟶2o))
1811, 17mpbid 146 . . . . . . . . . 10 (((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → 𝑔:𝐵⟶2o)
1918adantr 274 . . . . . . . . 9 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → 𝑔:𝐵⟶2o)
20 f1of 5374 . . . . . . . . . 10 (:𝐴1-1-onto𝐵:𝐴𝐵)
2120adantl 275 . . . . . . . . 9 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → :𝐴𝐵)
22 fco 5295 . . . . . . . . 9 ((𝑔:𝐵⟶2o:𝐴𝐵) → (𝑔):𝐴⟶2o)
2319, 21, 22syl2anc 409 . . . . . . . 8 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → (𝑔):𝐴⟶2o)
24 simpllr 524 . . . . . . . . 9 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → 𝐴 ∈ WOmni)
25 elmapg 6562 . . . . . . . . 9 ((2o ∈ ω ∧ 𝐴 ∈ WOmni) → ((𝑔) ∈ (2o𝑚 𝐴) ↔ (𝑔):𝐴⟶2o))
2612, 24, 25sylancr 411 . . . . . . . 8 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → ((𝑔) ∈ (2o𝑚 𝐴) ↔ (𝑔):𝐴⟶2o))
2723, 26mpbird 166 . . . . . . 7 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → (𝑔) ∈ (2o𝑚 𝐴))
287, 10, 27rspcdva 2797 . . . . . 6 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → DECID𝑥𝐴 ((𝑔)‘𝑥) = 1o)
29 f1ofn 5375 . . . . . . . . . . . 12 (:𝐴1-1-onto𝐵 Fn 𝐴)
3029ad3antlr 485 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → Fn 𝐴)
31 f1ocnv 5387 . . . . . . . . . . . . . 14 (:𝐴1-1-onto𝐵:𝐵1-1-onto𝐴)
32 f1of 5374 . . . . . . . . . . . . . 14 (:𝐵1-1-onto𝐴:𝐵𝐴)
3331, 32syl 14 . . . . . . . . . . . . 13 (:𝐴1-1-onto𝐵:𝐵𝐴)
3433ad3antlr 485 . . . . . . . . . . . 12 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → :𝐵𝐴)
35 simpr 109 . . . . . . . . . . . 12 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → 𝑦𝐵)
3634, 35ffvelrnd 5563 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → (𝑦) ∈ 𝐴)
37 fvco2 5497 . . . . . . . . . . 11 (( Fn 𝐴 ∧ (𝑦) ∈ 𝐴) → ((𝑔)‘(𝑦)) = (𝑔‘(‘(𝑦))))
3830, 36, 37syl2anc 409 . . . . . . . . . 10 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → ((𝑔)‘(𝑦)) = (𝑔‘(‘(𝑦))))
39 fveqeq2 5437 . . . . . . . . . . 11 (𝑥 = (𝑦) → (((𝑔)‘𝑥) = 1o ↔ ((𝑔)‘(𝑦)) = 1o))
40 simplr 520 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o)
4139, 40, 36rspcdva 2797 . . . . . . . . . 10 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → ((𝑔)‘(𝑦)) = 1o)
42 f1ocnvfv2 5686 . . . . . . . . . . . 12 ((:𝐴1-1-onto𝐵𝑦𝐵) → (‘(𝑦)) = 𝑦)
4342fveq2d 5432 . . . . . . . . . . 11 ((:𝐴1-1-onto𝐵𝑦𝐵) → (𝑔‘(‘(𝑦))) = (𝑔𝑦))
4443ad4ant24 508 . . . . . . . . . 10 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → (𝑔‘(‘(𝑦))) = (𝑔𝑦))
4538, 41, 443eqtr3rd 2182 . . . . . . . . 9 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) ∧ 𝑦𝐵) → (𝑔𝑦) = 1o)
4645ralrimiva 2508 . . . . . . . 8 (((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o) → ∀𝑦𝐵 (𝑔𝑦) = 1o)
4729ad3antlr 485 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) ∧ 𝑥𝐴) → Fn 𝐴)
48 simpr 109 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) ∧ 𝑥𝐴) → 𝑥𝐴)
49 fvco2 5497 . . . . . . . . . . 11 (( Fn 𝐴𝑥𝐴) → ((𝑔)‘𝑥) = (𝑔‘(𝑥)))
5047, 48, 49syl2anc 409 . . . . . . . . . 10 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) ∧ 𝑥𝐴) → ((𝑔)‘𝑥) = (𝑔‘(𝑥)))
51 fveqeq2 5437 . . . . . . . . . . 11 (𝑦 = (𝑥) → ((𝑔𝑦) = 1o ↔ (𝑔‘(𝑥)) = 1o))
52 simplr 520 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) ∧ 𝑥𝐴) → ∀𝑦𝐵 (𝑔𝑦) = 1o)
5321ffvelrnda 5562 . . . . . . . . . . . 12 (((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ 𝑥𝐴) → (𝑥) ∈ 𝐵)
5453adantlr 469 . . . . . . . . . . 11 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) ∧ 𝑥𝐴) → (𝑥) ∈ 𝐵)
5551, 52, 54rspcdva 2797 . . . . . . . . . 10 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) ∧ 𝑥𝐴) → (𝑔‘(𝑥)) = 1o)
5650, 55eqtrd 2173 . . . . . . . . 9 ((((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) ∧ 𝑥𝐴) → ((𝑔)‘𝑥) = 1o)
5756ralrimiva 2508 . . . . . . . 8 (((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) ∧ ∀𝑦𝐵 (𝑔𝑦) = 1o) → ∀𝑥𝐴 ((𝑔)‘𝑥) = 1o)
5846, 57impbida 586 . . . . . . 7 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → (∀𝑥𝐴 ((𝑔)‘𝑥) = 1o ↔ ∀𝑦𝐵 (𝑔𝑦) = 1o))
5958dcbid 824 . . . . . 6 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → (DECID𝑥𝐴 ((𝑔)‘𝑥) = 1oDECID𝑦𝐵 (𝑔𝑦) = 1o))
6028, 59mpbid 146 . . . . 5 ((((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) ∧ :𝐴1-1-onto𝐵) → DECID𝑦𝐵 (𝑔𝑦) = 1o)
613, 60exlimddv 1871 . . . 4 (((𝐴𝐵𝐴 ∈ WOmni) ∧ 𝑔 ∈ (2o𝑚 𝐵)) → DECID𝑦𝐵 (𝑔𝑦) = 1o)
6261ralrimiva 2508 . . 3 ((𝐴𝐵𝐴 ∈ WOmni) → ∀𝑔 ∈ (2o𝑚 𝐵)DECID𝑦𝐵 (𝑔𝑦) = 1o)
63 iswomnimap 7047 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ WOmni ↔ ∀𝑔 ∈ (2o𝑚 𝐵)DECID𝑦𝐵 (𝑔𝑦) = 1o))
6414, 63syl 14 . . . 4 (𝐴𝐵 → (𝐵 ∈ WOmni ↔ ∀𝑔 ∈ (2o𝑚 𝐵)DECID𝑦𝐵 (𝑔𝑦) = 1o))
6564adantr 274 . . 3 ((𝐴𝐵𝐴 ∈ WOmni) → (𝐵 ∈ WOmni ↔ ∀𝑔 ∈ (2o𝑚 𝐵)DECID𝑦𝐵 (𝑔𝑦) = 1o))
6662, 65mpbird 166 . 2 ((𝐴𝐵𝐴 ∈ WOmni) → 𝐵 ∈ WOmni)
6766ex 114 1 (𝐴𝐵 → (𝐴 ∈ WOmni → 𝐵 ∈ WOmni))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 820   = wceq 1332  wex 1469  wcel 1481  wral 2417  Vcvv 2689   class class class wbr 3936  ωcom 4511  ccnv 4545  ccom 4550   Fn wfn 5125  wf 5126  1-1-ontowf1o 5129  cfv 5130  (class class class)co 5781  1oc1o 6313  2oc2o 6314  𝑚 cmap 6549  cen 6639  WOmnicwomni 7044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-br 3937  df-opab 3997  df-id 4222  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1o 6320  df-2o 6321  df-map 6551  df-en 6642  df-womni 7045
This theorem is referenced by:  enwomni  7050
  Copyright terms: Public domain W3C validator