ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negfi GIF version

Theorem negfi 11204
Description: The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
negfi ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
Distinct variable group:   𝐴,𝑛

Proof of Theorem negfi
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3147 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (𝑎𝐴𝑎 ∈ ℝ))
2 renegcl 8192 . . . . . . . . . 10 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
31, 2syl6 33 . . . . . . . . 9 (𝐴 ⊆ ℝ → (𝑎𝐴 → -𝑎 ∈ ℝ))
43imp 124 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → -𝑎 ∈ ℝ)
54ralrimiva 2548 . . . . . . 7 (𝐴 ⊆ ℝ → ∀𝑎𝐴 -𝑎 ∈ ℝ)
6 dmmptg 5118 . . . . . . 7 (∀𝑎𝐴 -𝑎 ∈ ℝ → dom (𝑎𝐴 ↦ -𝑎) = 𝐴)
75, 6syl 14 . . . . . 6 (𝐴 ⊆ ℝ → dom (𝑎𝐴 ↦ -𝑎) = 𝐴)
87eqcomd 2181 . . . . 5 (𝐴 ⊆ ℝ → 𝐴 = dom (𝑎𝐴 ↦ -𝑎))
98eleq1d 2244 . . . 4 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
10 funmpt 5246 . . . . 5 Fun (𝑎𝐴 ↦ -𝑎)
11 fundmfibi 6928 . . . . 5 (Fun (𝑎𝐴 ↦ -𝑎) → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
1210, 11mp1i 10 . . . 4 (𝐴 ⊆ ℝ → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎𝐴 ↦ -𝑎) ∈ Fin))
139, 12bitr4d 191 . . 3 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ (𝑎𝐴 ↦ -𝑎) ∈ Fin))
14 reex 7920 . . . . . 6 ℝ ∈ V
1514ssex 4135 . . . . 5 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
16 mptexg 5733 . . . . 5 (𝐴 ∈ V → (𝑎𝐴 ↦ -𝑎) ∈ V)
1715, 16syl 14 . . . 4 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎) ∈ V)
18 eqid 2175 . . . . . 6 (𝑎𝐴 ↦ -𝑎) = (𝑎𝐴 ↦ -𝑎)
1918negf1o 8313 . . . . 5 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎):𝐴1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
20 f1of1 5452 . . . . 5 ((𝑎𝐴 ↦ -𝑎):𝐴1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥𝐴} → (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
2119, 20syl 14 . . . 4 (𝐴 ⊆ ℝ → (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴})
22 f1vrnfibi 6934 . . . 4 (((𝑎𝐴 ↦ -𝑎) ∈ V ∧ (𝑎𝐴 ↦ -𝑎):𝐴1-1→{𝑥 ∈ ℝ ∣ -𝑥𝐴}) → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎𝐴 ↦ -𝑎) ∈ Fin))
2317, 21, 22syl2anc 411 . . 3 (𝐴 ⊆ ℝ → ((𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎𝐴 ↦ -𝑎) ∈ Fin))
241imp 124 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
252adantl 277 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → -𝑎 ∈ ℝ)
26 recn 7919 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
2726negnegd 8233 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℝ → --𝑎 = 𝑎)
2827eqcomd 2181 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ → 𝑎 = --𝑎)
2928eleq1d 2244 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → (𝑎𝐴 ↔ --𝑎𝐴))
3029biimpcd 159 . . . . . . . . . . . . 13 (𝑎𝐴 → (𝑎 ∈ ℝ → --𝑎𝐴))
3130adantl 277 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (𝑎 ∈ ℝ → --𝑎𝐴))
3231imp 124 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → --𝑎𝐴)
3325, 32jca 306 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝑎𝐴) ∧ 𝑎 ∈ ℝ) → (-𝑎 ∈ ℝ ∧ --𝑎𝐴))
3424, 33mpdan 421 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (-𝑎 ∈ ℝ ∧ --𝑎𝐴))
35 eleq1 2238 . . . . . . . . . 10 (𝑛 = -𝑎 → (𝑛 ∈ ℝ ↔ -𝑎 ∈ ℝ))
36 negeq 8124 . . . . . . . . . . 11 (𝑛 = -𝑎 → -𝑛 = --𝑎)
3736eleq1d 2244 . . . . . . . . . 10 (𝑛 = -𝑎 → (-𝑛𝐴 ↔ --𝑎𝐴))
3835, 37anbi12d 473 . . . . . . . . 9 (𝑛 = -𝑎 → ((𝑛 ∈ ℝ ∧ -𝑛𝐴) ↔ (-𝑎 ∈ ℝ ∧ --𝑎𝐴)))
3934, 38syl5ibrcom 157 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑎𝐴) → (𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
4039rexlimdva 2592 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑎𝐴 𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
41 simprr 531 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → -𝑛𝐴)
42 negeq 8124 . . . . . . . . . . 11 (𝑎 = -𝑛 → -𝑎 = --𝑛)
4342eqeq2d 2187 . . . . . . . . . 10 (𝑎 = -𝑛 → (𝑛 = -𝑎𝑛 = --𝑛))
4443adantl 277 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) ∧ 𝑎 = -𝑛) → (𝑛 = -𝑎𝑛 = --𝑛))
45 recn 7919 . . . . . . . . . . 11 (𝑛 ∈ ℝ → 𝑛 ∈ ℂ)
46 negneg 8181 . . . . . . . . . . . 12 (𝑛 ∈ ℂ → --𝑛 = 𝑛)
4746eqcomd 2181 . . . . . . . . . . 11 (𝑛 ∈ ℂ → 𝑛 = --𝑛)
4845, 47syl 14 . . . . . . . . . 10 (𝑛 ∈ ℝ → 𝑛 = --𝑛)
4948ad2antrl 490 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → 𝑛 = --𝑛)
5041, 44, 49rspcedvd 2845 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛𝐴)) → ∃𝑎𝐴 𝑛 = -𝑎)
5150ex 115 . . . . . . 7 (𝐴 ⊆ ℝ → ((𝑛 ∈ ℝ ∧ -𝑛𝐴) → ∃𝑎𝐴 𝑛 = -𝑎))
5240, 51impbid 129 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑎𝐴 𝑛 = -𝑎 ↔ (𝑛 ∈ ℝ ∧ -𝑛𝐴)))
5352abbidv 2293 . . . . 5 (𝐴 ⊆ ℝ → {𝑛 ∣ ∃𝑎𝐴 𝑛 = -𝑎} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛𝐴)})
5418rnmpt 4868 . . . . 5 ran (𝑎𝐴 ↦ -𝑎) = {𝑛 ∣ ∃𝑎𝐴 𝑛 = -𝑎}
55 df-rab 2462 . . . . 5 {𝑛 ∈ ℝ ∣ -𝑛𝐴} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛𝐴)}
5653, 54, 553eqtr4g 2233 . . . 4 (𝐴 ⊆ ℝ → ran (𝑎𝐴 ↦ -𝑎) = {𝑛 ∈ ℝ ∣ -𝑛𝐴})
5756eleq1d 2244 . . 3 (𝐴 ⊆ ℝ → (ran (𝑎𝐴 ↦ -𝑎) ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin))
5813, 23, 573bitrd 214 . 2 (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin))
5958biimpa 296 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  {cab 2161  wral 2453  wrex 2454  {crab 2457  Vcvv 2735  wss 3127  cmpt 4059  dom cdm 4620  ran crn 4621  Fun wfun 5202  1-1wf1 5205  1-1-ontowf1o 5207  Fincfn 6730  cc 7784  cr 7785  -cneg 8103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-1o 6407  df-er 6525  df-en 6731  df-fin 6733  df-sub 8104  df-neg 8105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator