| Step | Hyp | Ref
| Expression |
| 1 | | ssel 3178 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ℝ → (𝑎 ∈ 𝐴 → 𝑎 ∈ ℝ)) |
| 2 | | renegcl 8304 |
. . . . . . . . . 10
⊢ (𝑎 ∈ ℝ → -𝑎 ∈
ℝ) |
| 3 | 1, 2 | syl6 33 |
. . . . . . . . 9
⊢ (𝐴 ⊆ ℝ → (𝑎 ∈ 𝐴 → -𝑎 ∈ ℝ)) |
| 4 | 3 | imp 124 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) → -𝑎 ∈ ℝ) |
| 5 | 4 | ralrimiva 2570 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ →
∀𝑎 ∈ 𝐴 -𝑎 ∈ ℝ) |
| 6 | | dmmptg 5168 |
. . . . . . 7
⊢
(∀𝑎 ∈
𝐴 -𝑎 ∈ ℝ → dom (𝑎 ∈ 𝐴 ↦ -𝑎) = 𝐴) |
| 7 | 5, 6 | syl 14 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ → dom
(𝑎 ∈ 𝐴 ↦ -𝑎) = 𝐴) |
| 8 | 7 | eqcomd 2202 |
. . . . 5
⊢ (𝐴 ⊆ ℝ → 𝐴 = dom (𝑎 ∈ 𝐴 ↦ -𝑎)) |
| 9 | 8 | eleq1d 2265 |
. . . 4
⊢ (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ dom (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin)) |
| 10 | | funmpt 5297 |
. . . . 5
⊢ Fun
(𝑎 ∈ 𝐴 ↦ -𝑎) |
| 11 | | fundmfibi 7013 |
. . . . 5
⊢ (Fun
(𝑎 ∈ 𝐴 ↦ -𝑎) → ((𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin)) |
| 12 | 10, 11 | mp1i 10 |
. . . 4
⊢ (𝐴 ⊆ ℝ → ((𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin ↔ dom (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin)) |
| 13 | 9, 12 | bitr4d 191 |
. . 3
⊢ (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin)) |
| 14 | | reex 8030 |
. . . . . 6
⊢ ℝ
∈ V |
| 15 | 14 | ssex 4171 |
. . . . 5
⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
| 16 | | mptexg 5790 |
. . . . 5
⊢ (𝐴 ∈ V → (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ V) |
| 17 | 15, 16 | syl 14 |
. . . 4
⊢ (𝐴 ⊆ ℝ → (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ V) |
| 18 | | eqid 2196 |
. . . . . 6
⊢ (𝑎 ∈ 𝐴 ↦ -𝑎) = (𝑎 ∈ 𝐴 ↦ -𝑎) |
| 19 | 18 | negf1o 8425 |
. . . . 5
⊢ (𝐴 ⊆ ℝ → (𝑎 ∈ 𝐴 ↦ -𝑎):𝐴–1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥 ∈ 𝐴}) |
| 20 | | f1of1 5506 |
. . . . 5
⊢ ((𝑎 ∈ 𝐴 ↦ -𝑎):𝐴–1-1-onto→{𝑥 ∈ ℝ ∣ -𝑥 ∈ 𝐴} → (𝑎 ∈ 𝐴 ↦ -𝑎):𝐴–1-1→{𝑥 ∈ ℝ ∣ -𝑥 ∈ 𝐴}) |
| 21 | 19, 20 | syl 14 |
. . . 4
⊢ (𝐴 ⊆ ℝ → (𝑎 ∈ 𝐴 ↦ -𝑎):𝐴–1-1→{𝑥 ∈ ℝ ∣ -𝑥 ∈ 𝐴}) |
| 22 | | f1vrnfibi 7020 |
. . . 4
⊢ (((𝑎 ∈ 𝐴 ↦ -𝑎) ∈ V ∧ (𝑎 ∈ 𝐴 ↦ -𝑎):𝐴–1-1→{𝑥 ∈ ℝ ∣ -𝑥 ∈ 𝐴}) → ((𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin)) |
| 23 | 17, 21, 22 | syl2anc 411 |
. . 3
⊢ (𝐴 ⊆ ℝ → ((𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin ↔ ran (𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin)) |
| 24 | 1 | imp 124 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℝ) |
| 25 | 2 | adantl 277 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) ∧ 𝑎 ∈ ℝ) → -𝑎 ∈ ℝ) |
| 26 | | recn 8029 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ ℝ → 𝑎 ∈
ℂ) |
| 27 | 26 | negnegd 8345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ ℝ → --𝑎 = 𝑎) |
| 28 | 27 | eqcomd 2202 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ℝ → 𝑎 = --𝑎) |
| 29 | 28 | eleq1d 2265 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ ℝ → (𝑎 ∈ 𝐴 ↔ --𝑎 ∈ 𝐴)) |
| 30 | 29 | biimpcd 159 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ 𝐴 → (𝑎 ∈ ℝ → --𝑎 ∈ 𝐴)) |
| 31 | 30 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) → (𝑎 ∈ ℝ → --𝑎 ∈ 𝐴)) |
| 32 | 31 | imp 124 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) ∧ 𝑎 ∈ ℝ) → --𝑎 ∈ 𝐴) |
| 33 | 25, 32 | jca 306 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) ∧ 𝑎 ∈ ℝ) → (-𝑎 ∈ ℝ ∧ --𝑎 ∈ 𝐴)) |
| 34 | 24, 33 | mpdan 421 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) → (-𝑎 ∈ ℝ ∧ --𝑎 ∈ 𝐴)) |
| 35 | | eleq1 2259 |
. . . . . . . . . 10
⊢ (𝑛 = -𝑎 → (𝑛 ∈ ℝ ↔ -𝑎 ∈ ℝ)) |
| 36 | | negeq 8236 |
. . . . . . . . . . 11
⊢ (𝑛 = -𝑎 → -𝑛 = --𝑎) |
| 37 | 36 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑛 = -𝑎 → (-𝑛 ∈ 𝐴 ↔ --𝑎 ∈ 𝐴)) |
| 38 | 35, 37 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑛 = -𝑎 → ((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ↔ (-𝑎 ∈ ℝ ∧ --𝑎 ∈ 𝐴))) |
| 39 | 34, 38 | syl5ibrcom 157 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ 𝑎 ∈ 𝐴) → (𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴))) |
| 40 | 39 | rexlimdva 2614 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ →
(∃𝑎 ∈ 𝐴 𝑛 = -𝑎 → (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴))) |
| 41 | | simprr 531 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴)) → -𝑛 ∈ 𝐴) |
| 42 | | negeq 8236 |
. . . . . . . . . . 11
⊢ (𝑎 = -𝑛 → -𝑎 = --𝑛) |
| 43 | 42 | eqeq2d 2208 |
. . . . . . . . . 10
⊢ (𝑎 = -𝑛 → (𝑛 = -𝑎 ↔ 𝑛 = --𝑛)) |
| 44 | 43 | adantl 277 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴)) ∧ 𝑎 = -𝑛) → (𝑛 = -𝑎 ↔ 𝑛 = --𝑛)) |
| 45 | | recn 8029 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℝ → 𝑛 ∈
ℂ) |
| 46 | | negneg 8293 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℂ → --𝑛 = 𝑛) |
| 47 | 46 | eqcomd 2202 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℂ → 𝑛 = --𝑛) |
| 48 | 45, 47 | syl 14 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℝ → 𝑛 = --𝑛) |
| 49 | 48 | ad2antrl 490 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴)) → 𝑛 = --𝑛) |
| 50 | 41, 44, 49 | rspcedvd 2874 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴)) → ∃𝑎 ∈ 𝐴 𝑛 = -𝑎) |
| 51 | 50 | ex 115 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ → ((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) → ∃𝑎 ∈ 𝐴 𝑛 = -𝑎)) |
| 52 | 40, 51 | impbid 129 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∃𝑎 ∈ 𝐴 𝑛 = -𝑎 ↔ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴))) |
| 53 | 52 | abbidv 2314 |
. . . . 5
⊢ (𝐴 ⊆ ℝ → {𝑛 ∣ ∃𝑎 ∈ 𝐴 𝑛 = -𝑎} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴)}) |
| 54 | 18 | rnmpt 4915 |
. . . . 5
⊢ ran
(𝑎 ∈ 𝐴 ↦ -𝑎) = {𝑛 ∣ ∃𝑎 ∈ 𝐴 𝑛 = -𝑎} |
| 55 | | df-rab 2484 |
. . . . 5
⊢ {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} = {𝑛 ∣ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴)} |
| 56 | 53, 54, 55 | 3eqtr4g 2254 |
. . . 4
⊢ (𝐴 ⊆ ℝ → ran
(𝑎 ∈ 𝐴 ↦ -𝑎) = {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴}) |
| 57 | 56 | eleq1d 2265 |
. . 3
⊢ (𝐴 ⊆ ℝ → (ran
(𝑎 ∈ 𝐴 ↦ -𝑎) ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} ∈ Fin)) |
| 58 | 13, 23, 57 | 3bitrd 214 |
. 2
⊢ (𝐴 ⊆ ℝ → (𝐴 ∈ Fin ↔ {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} ∈ Fin)) |
| 59 | 58 | biimpa 296 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} ∈ Fin) |