![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2zinfmin | GIF version |
Description: Two ways to express the minimum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 14-Oct-2024.) |
Ref | Expression |
---|---|
2zinfmin | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → inf({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9271 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
2 | zre 9271 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
3 | mingeb 11264 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) | |
4 | 1, 2, 3 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) |
5 | 4 | biimpa 296 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≤ 𝐵) → inf({𝐴, 𝐵}, ℝ, < ) = 𝐴) |
6 | simpr 110 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
7 | 6 | iftrued 3553 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐴) |
8 | 5, 7 | eqtr4d 2223 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≤ 𝐵) → inf({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
9 | mincom 11251 | . . . 4 ⊢ inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < ) | |
10 | 2 | ad2antlr 489 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
11 | 1 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
12 | zltnle 9313 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) | |
13 | 12 | ancoms 268 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) |
14 | 13 | biimpar 297 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 < 𝐴) |
15 | 10, 11, 14 | ltled 8090 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐴) |
16 | mingeb 11264 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ inf({𝐵, 𝐴}, ℝ, < ) = 𝐵)) | |
17 | 10, 11, 16 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐴 ↔ inf({𝐵, 𝐴}, ℝ, < ) = 𝐵)) |
18 | 15, 17 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → inf({𝐵, 𝐴}, ℝ, < ) = 𝐵) |
19 | 9, 18 | eqtrid 2232 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → inf({𝐴, 𝐵}, ℝ, < ) = 𝐵) |
20 | simpr 110 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → ¬ 𝐴 ≤ 𝐵) | |
21 | 20 | iffalsed 3556 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) |
22 | 19, 21 | eqtr4d 2223 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → inf({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
23 | zdcle 9343 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 ≤ 𝐵) | |
24 | exmiddc 837 | . . 3 ⊢ (DECID 𝐴 ≤ 𝐵 → (𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) | |
25 | 23, 24 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) |
26 | 8, 22, 25 | mpjaodan 799 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → inf({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1363 ∈ wcel 2158 ifcif 3546 {cpr 3605 class class class wbr 4015 infcinf 6996 ℝcr 7824 < clt 8006 ≤ cle 8007 ℤcz 9267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 ax-arch 7944 ax-caucvg 7945 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-frec 6406 df-sup 6997 df-inf 6998 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-n0 9191 df-z 9268 df-uz 9543 df-rp 9668 df-seqfrec 10460 df-exp 10534 df-cj 10865 df-re 10866 df-im 10867 df-rsqrt 11021 df-abs 11022 |
This theorem is referenced by: pc2dvds 12343 |
Copyright terms: Public domain | W3C validator |