![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2zinfmin | GIF version |
Description: Two ways to express the minimum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 14-Oct-2024.) |
Ref | Expression |
---|---|
2zinfmin | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → inf({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9321 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
2 | zre 9321 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
3 | mingeb 11385 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) | |
4 | 1, 2, 3 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) |
5 | 4 | biimpa 296 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≤ 𝐵) → inf({𝐴, 𝐵}, ℝ, < ) = 𝐴) |
6 | simpr 110 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
7 | 6 | iftrued 3564 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐴) |
8 | 5, 7 | eqtr4d 2229 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐴 ≤ 𝐵) → inf({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
9 | mincom 11372 | . . . 4 ⊢ inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < ) | |
10 | 2 | ad2antlr 489 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
11 | 1 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
12 | zltnle 9363 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) | |
13 | 12 | ancoms 268 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) |
14 | 13 | biimpar 297 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 < 𝐴) |
15 | 10, 11, 14 | ltled 8138 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐴) |
16 | mingeb 11385 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ inf({𝐵, 𝐴}, ℝ, < ) = 𝐵)) | |
17 | 10, 11, 16 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐴 ↔ inf({𝐵, 𝐴}, ℝ, < ) = 𝐵)) |
18 | 15, 17 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → inf({𝐵, 𝐴}, ℝ, < ) = 𝐵) |
19 | 9, 18 | eqtrid 2238 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → inf({𝐴, 𝐵}, ℝ, < ) = 𝐵) |
20 | simpr 110 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → ¬ 𝐴 ≤ 𝐵) | |
21 | 20 | iffalsed 3567 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) |
22 | 19, 21 | eqtr4d 2229 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐴 ≤ 𝐵) → inf({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
23 | zdcle 9393 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 ≤ 𝐵) | |
24 | exmiddc 837 | . . 3 ⊢ (DECID 𝐴 ≤ 𝐵 → (𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) | |
25 | 23, 24 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ≤ 𝐵 ∨ ¬ 𝐴 ≤ 𝐵)) |
26 | 8, 22, 25 | mpjaodan 799 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → inf({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ifcif 3557 {cpr 3619 class class class wbr 4029 infcinf 7042 ℝcr 7871 < clt 8054 ≤ cle 8055 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-rp 9720 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 |
This theorem is referenced by: pc2dvds 12468 |
Copyright terms: Public domain | W3C validator |