| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mingeb | GIF version | ||
| Description: Equivalence of ≤ and being equal to the minimum of two reals. (Contributed by Jim Kingdon, 14-Oct-2024.) |
| Ref | Expression |
|---|---|
| mingeb | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl 8353 | . . . . 5 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
| 2 | renegcl 8353 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 3 | maxcl 11596 | . . . . 5 ⊢ ((-𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ) → sup({-𝐵, -𝐴}, ℝ, < ) ∈ ℝ) | |
| 4 | 1, 2, 3 | syl2anr 290 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐵, -𝐴}, ℝ, < ) ∈ ℝ) |
| 5 | 4 | recnd 8121 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐵, -𝐴}, ℝ, < ) ∈ ℂ) |
| 6 | 2 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈ ℝ) |
| 7 | 6 | recnd 8121 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈ ℂ) |
| 8 | 5, 7 | neg11ad 8399 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-sup({-𝐵, -𝐴}, ℝ, < ) = --𝐴 ↔ sup({-𝐵, -𝐴}, ℝ, < ) = -𝐴)) |
| 9 | mincom 11615 | . . . 4 ⊢ inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < ) | |
| 10 | minmax 11616 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → inf({𝐵, 𝐴}, ℝ, < ) = -sup({-𝐵, -𝐴}, ℝ, < )) | |
| 11 | 10 | ancoms 268 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐵, 𝐴}, ℝ, < ) = -sup({-𝐵, -𝐴}, ℝ, < )) |
| 12 | 9, 11 | eqtrid 2251 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐵, -𝐴}, ℝ, < )) |
| 13 | simpl 109 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 14 | 13 | recnd 8121 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ) |
| 15 | 14 | negnegd 8394 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐴 = 𝐴) |
| 16 | 15 | eqcomd 2212 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 = --𝐴) |
| 17 | 12, 16 | eqeq12d 2221 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf({𝐴, 𝐵}, ℝ, < ) = 𝐴 ↔ -sup({-𝐵, -𝐴}, ℝ, < ) = --𝐴)) |
| 18 | leneg 8558 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) | |
| 19 | maxleb 11602 | . . . 4 ⊢ ((-𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (-𝐵 ≤ -𝐴 ↔ sup({-𝐵, -𝐴}, ℝ, < ) = -𝐴)) | |
| 20 | 1, 2, 19 | syl2anr 290 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐵 ≤ -𝐴 ↔ sup({-𝐵, -𝐴}, ℝ, < ) = -𝐴)) |
| 21 | 18, 20 | bitrd 188 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ sup({-𝐵, -𝐴}, ℝ, < ) = -𝐴)) |
| 22 | 8, 17, 21 | 3bitr4rd 221 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 {cpr 3639 class class class wbr 4051 supcsup 7099 infcinf 7100 ℝcr 7944 < clt 8127 ≤ cle 8128 -cneg 8264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-sup 7101 df-inf 7102 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-rp 9796 df-seqfrec 10615 df-exp 10706 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 |
| This theorem is referenced by: 2zinfmin 11629 hovergt0 15197 |
| Copyright terms: Public domain | W3C validator |