Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mingeb | GIF version |
Description: Equivalence of ≤ and being equal to the minimum of two reals. (Contributed by Jim Kingdon, 14-Oct-2024.) |
Ref | Expression |
---|---|
mingeb | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl 8167 | . . . . 5 ⊢ (𝐵 ∈ ℝ → -𝐵 ∈ ℝ) | |
2 | renegcl 8167 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
3 | maxcl 11161 | . . . . 5 ⊢ ((-𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ) → sup({-𝐵, -𝐴}, ℝ, < ) ∈ ℝ) | |
4 | 1, 2, 3 | syl2anr 288 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐵, -𝐴}, ℝ, < ) ∈ ℝ) |
5 | 4 | recnd 7935 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({-𝐵, -𝐴}, ℝ, < ) ∈ ℂ) |
6 | 2 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈ ℝ) |
7 | 6 | recnd 7935 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈ ℂ) |
8 | 5, 7 | neg11ad 8213 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-sup({-𝐵, -𝐴}, ℝ, < ) = --𝐴 ↔ sup({-𝐵, -𝐴}, ℝ, < ) = -𝐴)) |
9 | mincom 11179 | . . . 4 ⊢ inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < ) | |
10 | minmax 11180 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → inf({𝐵, 𝐴}, ℝ, < ) = -sup({-𝐵, -𝐴}, ℝ, < )) | |
11 | 10 | ancoms 266 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐵, 𝐴}, ℝ, < ) = -sup({-𝐵, -𝐴}, ℝ, < )) |
12 | 9, 11 | eqtrid 2215 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐵, -𝐴}, ℝ, < )) |
13 | simpl 108 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
14 | 13 | recnd 7935 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ) |
15 | 14 | negnegd 8208 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → --𝐴 = 𝐴) |
16 | 15 | eqcomd 2176 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 = --𝐴) |
17 | 12, 16 | eqeq12d 2185 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf({𝐴, 𝐵}, ℝ, < ) = 𝐴 ↔ -sup({-𝐵, -𝐴}, ℝ, < ) = --𝐴)) |
18 | leneg 8371 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ -𝐵 ≤ -𝐴)) | |
19 | maxleb 11167 | . . . 4 ⊢ ((-𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (-𝐵 ≤ -𝐴 ↔ sup({-𝐵, -𝐴}, ℝ, < ) = -𝐴)) | |
20 | 1, 2, 19 | syl2anr 288 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐵 ≤ -𝐴 ↔ sup({-𝐵, -𝐴}, ℝ, < ) = -𝐴)) |
21 | 18, 20 | bitrd 187 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ sup({-𝐵, -𝐴}, ℝ, < ) = -𝐴)) |
22 | 8, 17, 21 | 3bitr4rd 220 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {cpr 3582 class class class wbr 3987 supcsup 6955 infcinf 6956 ℝcr 7760 < clt 7941 ≤ cle 7942 -cneg 8078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-sup 6957 df-inf 6958 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-n0 9123 df-z 9200 df-uz 9475 df-rp 9598 df-seqfrec 10389 df-exp 10463 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 |
This theorem is referenced by: 2zinfmin 11193 |
Copyright terms: Public domain | W3C validator |