![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnvdif | GIF version |
Description: Distributive law for converse over set difference. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
cnvdif | ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5008 | . 2 ⊢ Rel ◡(𝐴 ∖ 𝐵) | |
2 | difss 3263 | . . 3 ⊢ (◡𝐴 ∖ ◡𝐵) ⊆ ◡𝐴 | |
3 | relcnv 5008 | . . 3 ⊢ Rel ◡𝐴 | |
4 | relss 4715 | . . 3 ⊢ ((◡𝐴 ∖ ◡𝐵) ⊆ ◡𝐴 → (Rel ◡𝐴 → Rel (◡𝐴 ∖ ◡𝐵))) | |
5 | 2, 3, 4 | mp2 16 | . 2 ⊢ Rel (◡𝐴 ∖ ◡𝐵) |
6 | eldif 3140 | . . 3 ⊢ (⟨𝑦, 𝑥⟩ ∈ (𝐴 ∖ 𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵)) | |
7 | vex 2742 | . . . 4 ⊢ 𝑥 ∈ V | |
8 | vex 2742 | . . . 4 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | opelcnv 4811 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡(𝐴 ∖ 𝐵) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴 ∖ 𝐵)) |
10 | eldif 3140 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ (◡𝐴 ∖ ◡𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ ◡𝐴 ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ ◡𝐵)) | |
11 | 7, 8 | opelcnv 4811 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡𝐴 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴) |
12 | 7, 8 | opelcnv 4811 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡𝐵 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐵) |
13 | 12 | notbii 668 | . . . . 5 ⊢ (¬ ⟨𝑥, 𝑦⟩ ∈ ◡𝐵 ↔ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵) |
14 | 11, 13 | anbi12i 460 | . . . 4 ⊢ ((⟨𝑥, 𝑦⟩ ∈ ◡𝐴 ∧ ¬ ⟨𝑥, 𝑦⟩ ∈ ◡𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵)) |
15 | 10, 14 | bitri 184 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ (◡𝐴 ∖ ◡𝐵) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 ∧ ¬ ⟨𝑦, 𝑥⟩ ∈ 𝐵)) |
16 | 6, 9, 15 | 3bitr4i 212 | . 2 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡(𝐴 ∖ 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (◡𝐴 ∖ ◡𝐵)) |
17 | 1, 5, 16 | eqrelriiv 4722 | 1 ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∖ cdif 3128 ⊆ wss 3131 ⟨cop 3597 ◡ccnv 4627 Rel wrel 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |