| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvdif | GIF version | ||
| Description: Distributive law for converse over set difference. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| cnvdif | ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5047 | . 2 ⊢ Rel ◡(𝐴 ∖ 𝐵) | |
| 2 | difss 3289 | . . 3 ⊢ (◡𝐴 ∖ ◡𝐵) ⊆ ◡𝐴 | |
| 3 | relcnv 5047 | . . 3 ⊢ Rel ◡𝐴 | |
| 4 | relss 4750 | . . 3 ⊢ ((◡𝐴 ∖ ◡𝐵) ⊆ ◡𝐴 → (Rel ◡𝐴 → Rel (◡𝐴 ∖ ◡𝐵))) | |
| 5 | 2, 3, 4 | mp2 16 | . 2 ⊢ Rel (◡𝐴 ∖ ◡𝐵) |
| 6 | eldif 3166 | . . 3 ⊢ (〈𝑦, 𝑥〉 ∈ (𝐴 ∖ 𝐵) ↔ (〈𝑦, 𝑥〉 ∈ 𝐴 ∧ ¬ 〈𝑦, 𝑥〉 ∈ 𝐵)) | |
| 7 | vex 2766 | . . . 4 ⊢ 𝑥 ∈ V | |
| 8 | vex 2766 | . . . 4 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | opelcnv 4848 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(𝐴 ∖ 𝐵) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 ∖ 𝐵)) |
| 10 | eldif 3166 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (◡𝐴 ∖ ◡𝐵) ↔ (〈𝑥, 𝑦〉 ∈ ◡𝐴 ∧ ¬ 〈𝑥, 𝑦〉 ∈ ◡𝐵)) | |
| 11 | 7, 8 | opelcnv 4848 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡𝐴 ↔ 〈𝑦, 𝑥〉 ∈ 𝐴) |
| 12 | 7, 8 | opelcnv 4848 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ ◡𝐵 ↔ 〈𝑦, 𝑥〉 ∈ 𝐵) |
| 13 | 12 | notbii 669 | . . . . 5 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ ◡𝐵 ↔ ¬ 〈𝑦, 𝑥〉 ∈ 𝐵) |
| 14 | 11, 13 | anbi12i 460 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 ∈ ◡𝐴 ∧ ¬ 〈𝑥, 𝑦〉 ∈ ◡𝐵) ↔ (〈𝑦, 𝑥〉 ∈ 𝐴 ∧ ¬ 〈𝑦, 𝑥〉 ∈ 𝐵)) |
| 15 | 10, 14 | bitri 184 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (◡𝐴 ∖ ◡𝐵) ↔ (〈𝑦, 𝑥〉 ∈ 𝐴 ∧ ¬ 〈𝑦, 𝑥〉 ∈ 𝐵)) |
| 16 | 6, 9, 15 | 3bitr4i 212 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(𝐴 ∖ 𝐵) ↔ 〈𝑥, 𝑦〉 ∈ (◡𝐴 ∖ ◡𝐵)) |
| 17 | 1, 5, 16 | eqrelriiv 4757 | 1 ⊢ ◡(𝐴 ∖ 𝐵) = (◡𝐴 ∖ ◡𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∖ cdif 3154 ⊆ wss 3157 〈cop 3625 ◡ccnv 4662 Rel wrel 4668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |