| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvsn | GIF version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| fvsn.1 | ⊢ 𝐴 ∈ V |
| fvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| fvsn | ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | fvsn.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | funsn 5330 | . 2 ⊢ Fun {〈𝐴, 𝐵〉} |
| 4 | 1, 2 | opex 4280 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V |
| 5 | 4 | snid 3668 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
| 6 | funopfv 5630 | . 2 ⊢ (Fun {〈𝐴, 𝐵〉} → (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) | |
| 7 | 3, 5, 6 | mp2 16 | 1 ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 {csn 3637 〈cop 3640 Fun wfun 5273 ‘cfv 5279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 |
| This theorem is referenced by: fvsng 5792 fvsnun1 5793 fvpr1 5800 elixpsn 6834 mapsnen 6916 ac6sfi 7009 |
| Copyright terms: Public domain | W3C validator |