![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvsn | GIF version |
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
fvsn.1 | ⊢ 𝐴 ∈ V |
fvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvsn | ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | fvsn.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | funsn 5302 | . 2 ⊢ Fun {〈𝐴, 𝐵〉} |
4 | 1, 2 | opex 4258 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V |
5 | 4 | snid 3649 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
6 | funopfv 5596 | . 2 ⊢ (Fun {〈𝐴, 𝐵〉} → (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) | |
7 | 3, 5, 6 | mp2 16 | 1 ⊢ ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 Vcvv 2760 {csn 3618 〈cop 3621 Fun wfun 5248 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 |
This theorem is referenced by: fvsng 5754 fvsnun1 5755 fvpr1 5762 elixpsn 6789 mapsnen 6865 ac6sfi 6954 |
Copyright terms: Public domain | W3C validator |