ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsn GIF version

Theorem fvsn 5791
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994.)
Hypotheses
Ref Expression
fvsn.1 𝐴 ∈ V
fvsn.2 𝐵 ∈ V
Assertion
Ref Expression
fvsn ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵

Proof of Theorem fvsn
StepHypRef Expression
1 fvsn.1 . . 3 𝐴 ∈ V
2 fvsn.2 . . 3 𝐵 ∈ V
31, 2funsn 5330 . 2 Fun {⟨𝐴, 𝐵⟩}
41, 2opex 4280 . . 3 𝐴, 𝐵⟩ ∈ V
54snid 3668 . 2 𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩}
6 funopfv 5630 . 2 (Fun {⟨𝐴, 𝐵⟩} → (⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩} → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵))
73, 5, 6mp2 16 1 ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  Vcvv 2773  {csn 3637  cop 3640  Fun wfun 5273  cfv 5279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-opab 4113  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-iota 5240  df-fun 5281  df-fv 5287
This theorem is referenced by:  fvsng  5792  fvsnun1  5793  fvpr1  5800  elixpsn  6834  mapsnen  6916  ac6sfi  7009
  Copyright terms: Public domain W3C validator