ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfzennn GIF version

Theorem frecfzennn 10230
Description: The cardinality of a finite set of sequential integers. (See frec2uz0d 10203 for a description of the hypothesis.) (Contributed by Jim Kingdon, 18-May-2020.)
Hypothesis
Ref Expression
frecfzennn.1 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
frecfzennn (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (𝐺𝑁))

Proof of Theorem frecfzennn
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5790 . . 3 (𝑛 = 0 → (1...𝑛) = (1...0))
2 fveq2 5429 . . 3 (𝑛 = 0 → (𝐺𝑛) = (𝐺‘0))
31, 2breq12d 3950 . 2 (𝑛 = 0 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...0) ≈ (𝐺‘0)))
4 oveq2 5790 . . 3 (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚))
5 fveq2 5429 . . 3 (𝑛 = 𝑚 → (𝐺𝑛) = (𝐺𝑚))
64, 5breq12d 3950 . 2 (𝑛 = 𝑚 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...𝑚) ≈ (𝐺𝑚)))
7 oveq2 5790 . . 3 (𝑛 = (𝑚 + 1) → (1...𝑛) = (1...(𝑚 + 1)))
8 fveq2 5429 . . 3 (𝑛 = (𝑚 + 1) → (𝐺𝑛) = (𝐺‘(𝑚 + 1)))
97, 8breq12d 3950 . 2 (𝑛 = (𝑚 + 1) → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1))))
10 oveq2 5790 . . 3 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
11 fveq2 5429 . . 3 (𝑛 = 𝑁 → (𝐺𝑛) = (𝐺𝑁))
1210, 11breq12d 3950 . 2 (𝑛 = 𝑁 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...𝑁) ≈ (𝐺𝑁)))
13 0ex 4063 . . . 4 ∅ ∈ V
1413enref 6667 . . 3 ∅ ≈ ∅
15 fz10 9857 . . 3 (1...0) = ∅
16 0zd 9090 . . . . . . 7 (⊤ → 0 ∈ ℤ)
17 frecfzennn.1 . . . . . . 7 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1816, 17frec2uzf1od 10210 . . . . . 6 (⊤ → 𝐺:ω–1-1-onto→(ℤ‘0))
1918mptru 1341 . . . . 5 𝐺:ω–1-1-onto→(ℤ‘0)
20 peano1 4516 . . . . 5 ∅ ∈ ω
2119, 20pm3.2i 270 . . . 4 (𝐺:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω)
2216, 17frec2uz0d 10203 . . . . 5 (⊤ → (𝐺‘∅) = 0)
2322mptru 1341 . . . 4 (𝐺‘∅) = 0
24 f1ocnvfv 5688 . . . 4 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (𝐺‘0) = ∅))
2521, 23, 24mp2 16 . . 3 (𝐺‘0) = ∅
2614, 15, 253brtr4i 3966 . 2 (1...0) ≈ (𝐺‘0)
27 simpr 109 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...𝑚) ≈ (𝐺𝑚))
28 peano2nn0 9041 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
29 zex 9087 . . . . . . . . . . . . . . 15 ℤ ∈ V
3029mptex 5654 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
31 vex 2692 . . . . . . . . . . . . . 14 𝑧 ∈ V
3230, 31fvex 5449 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
3332ax-gen 1426 . . . . . . . . . . . 12 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
34 0z 9089 . . . . . . . . . . . 12 0 ∈ ℤ
35 frecfnom 6306 . . . . . . . . . . . 12 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 0 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω)
3633, 34, 35mp2an 423 . . . . . . . . . . 11 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω
3717fneq1i 5225 . . . . . . . . . . 11 (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω)
3836, 37mpbir 145 . . . . . . . . . 10 𝐺 Fn ω
39 omex 4515 . . . . . . . . . 10 ω ∈ V
40 fnex 5650 . . . . . . . . . 10 ((𝐺 Fn ω ∧ ω ∈ V) → 𝐺 ∈ V)
4138, 39, 40mp2an 423 . . . . . . . . 9 𝐺 ∈ V
4241cnvex 5085 . . . . . . . 8 𝐺 ∈ V
43 vex 2692 . . . . . . . 8 𝑚 ∈ V
4442, 43fvex 5449 . . . . . . 7 (𝐺𝑚) ∈ V
45 en2sn 6715 . . . . . . 7 (((𝑚 + 1) ∈ ℕ0 ∧ (𝐺𝑚) ∈ V) → {(𝑚 + 1)} ≈ {(𝐺𝑚)})
4628, 44, 45sylancl 410 . . . . . 6 (𝑚 ∈ ℕ0 → {(𝑚 + 1)} ≈ {(𝐺𝑚)})
4746adantr 274 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → {(𝑚 + 1)} ≈ {(𝐺𝑚)})
48 fzp1disj 9891 . . . . . 6 ((1...𝑚) ∩ {(𝑚 + 1)}) = ∅
4948a1i 9 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((1...𝑚) ∩ {(𝑚 + 1)}) = ∅)
50 f1ocnvdm 5690 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑚 ∈ (ℤ‘0)) → (𝐺𝑚) ∈ ω)
5119, 50mpan 421 . . . . . . . . 9 (𝑚 ∈ (ℤ‘0) → (𝐺𝑚) ∈ ω)
52 nn0uz 9384 . . . . . . . . 9 0 = (ℤ‘0)
5351, 52eleq2s 2235 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝐺𝑚) ∈ ω)
54 nnord 4533 . . . . . . . 8 ((𝐺𝑚) ∈ ω → Ord (𝐺𝑚))
55 ordirr 4465 . . . . . . . 8 (Ord (𝐺𝑚) → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
5653, 54, 553syl 17 . . . . . . 7 (𝑚 ∈ ℕ0 → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
5756adantr 274 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
58 disjsn 3593 . . . . . 6 (((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅ ↔ ¬ (𝐺𝑚) ∈ (𝐺𝑚))
5957, 58sylibr 133 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅)
60 unen 6718 . . . . 5 ((((1...𝑚) ≈ (𝐺𝑚) ∧ {(𝑚 + 1)} ≈ {(𝐺𝑚)}) ∧ (((1...𝑚) ∩ {(𝑚 + 1)}) = ∅ ∧ ((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅)) → ((1...𝑚) ∪ {(𝑚 + 1)}) ≈ ((𝐺𝑚) ∪ {(𝐺𝑚)}))
6127, 47, 49, 59, 60syl22anc 1218 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((1...𝑚) ∪ {(𝑚 + 1)}) ≈ ((𝐺𝑚) ∪ {(𝐺𝑚)}))
62 1z 9104 . . . . . 6 1 ∈ ℤ
63 1m1e0 8813 . . . . . . . . . 10 (1 − 1) = 0
6463fveq2i 5432 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
6552, 64eqtr4i 2164 . . . . . . . 8 0 = (ℤ‘(1 − 1))
6665eleq2i 2207 . . . . . . 7 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘(1 − 1)))
6766biimpi 119 . . . . . 6 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘(1 − 1)))
68 fzsuc2 9890 . . . . . 6 ((1 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(1 − 1))) → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
6962, 67, 68sylancr 411 . . . . 5 (𝑚 ∈ ℕ0 → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
7069adantr 274 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
71 peano2 4517 . . . . . . . . 9 ((𝐺𝑚) ∈ ω → suc (𝐺𝑚) ∈ ω)
7253, 71syl 14 . . . . . . . 8 (𝑚 ∈ ℕ0 → suc (𝐺𝑚) ∈ ω)
7372, 19jctil 310 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝐺:ω–1-1-onto→(ℤ‘0) ∧ suc (𝐺𝑚) ∈ ω))
74 0zd 9090 . . . . . . . . . 10 ((𝐺𝑚) ∈ ω → 0 ∈ ℤ)
75 id 19 . . . . . . . . . 10 ((𝐺𝑚) ∈ ω → (𝐺𝑚) ∈ ω)
7674, 17, 75frec2uzsucd 10205 . . . . . . . . 9 ((𝐺𝑚) ∈ ω → (𝐺‘suc (𝐺𝑚)) = ((𝐺‘(𝐺𝑚)) + 1))
7753, 76syl 14 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝐺‘suc (𝐺𝑚)) = ((𝐺‘(𝐺𝑚)) + 1))
7852eleq2i 2207 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘0))
7978biimpi 119 . . . . . . . . . 10 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘0))
80 f1ocnvfv2 5687 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑚 ∈ (ℤ‘0)) → (𝐺‘(𝐺𝑚)) = 𝑚)
8119, 79, 80sylancr 411 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (𝐺‘(𝐺𝑚)) = 𝑚)
8281oveq1d 5797 . . . . . . . 8 (𝑚 ∈ ℕ0 → ((𝐺‘(𝐺𝑚)) + 1) = (𝑚 + 1))
8377, 82eqtrd 2173 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝐺‘suc (𝐺𝑚)) = (𝑚 + 1))
84 f1ocnvfv 5688 . . . . . . 7 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ suc (𝐺𝑚) ∈ ω) → ((𝐺‘suc (𝐺𝑚)) = (𝑚 + 1) → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚)))
8573, 83, 84sylc 62 . . . . . 6 (𝑚 ∈ ℕ0 → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚))
8685adantr 274 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚))
87 df-suc 4301 . . . . 5 suc (𝐺𝑚) = ((𝐺𝑚) ∪ {(𝐺𝑚)})
8886, 87eqtrdi 2189 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (𝐺‘(𝑚 + 1)) = ((𝐺𝑚) ∪ {(𝐺𝑚)}))
8961, 70, 883brtr4d 3968 . . 3 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1)))
9089ex 114 . 2 (𝑚 ∈ ℕ0 → ((1...𝑚) ≈ (𝐺𝑚) → (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1))))
913, 6, 9, 12, 26, 90nn0ind 9189 1 (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (𝐺𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1330   = wceq 1332  wtru 1333  wcel 1481  Vcvv 2689  cun 3074  cin 3075  c0 3368  {csn 3532   class class class wbr 3937  cmpt 3997  Ord word 4292  suc csuc 4295  ωcom 4512  ccnv 4546   Fn wfn 5126  1-1-ontowf1o 5130  cfv 5131  (class class class)co 5782  freccfrec 6295  cen 6640  0cc0 7644  1c1 7645   + caddc 7647  cmin 7957  0cn0 9001  cz 9078  cuz 9350  ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-recs 6210  df-frec 6296  df-1o 6321  df-er 6437  df-en 6643  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822
This theorem is referenced by:  frecfzen2  10231  hashfz1  10561
  Copyright terms: Public domain W3C validator