| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 5933 |
. . 3
⊢ (𝑛 = 0 → (1...𝑛) = (1...0)) |
| 2 | | fveq2 5561 |
. . 3
⊢ (𝑛 = 0 → (◡𝐺‘𝑛) = (◡𝐺‘0)) |
| 3 | 1, 2 | breq12d 4047 |
. 2
⊢ (𝑛 = 0 → ((1...𝑛) ≈ (◡𝐺‘𝑛) ↔ (1...0) ≈ (◡𝐺‘0))) |
| 4 | | oveq2 5933 |
. . 3
⊢ (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚)) |
| 5 | | fveq2 5561 |
. . 3
⊢ (𝑛 = 𝑚 → (◡𝐺‘𝑛) = (◡𝐺‘𝑚)) |
| 6 | 4, 5 | breq12d 4047 |
. 2
⊢ (𝑛 = 𝑚 → ((1...𝑛) ≈ (◡𝐺‘𝑛) ↔ (1...𝑚) ≈ (◡𝐺‘𝑚))) |
| 7 | | oveq2 5933 |
. . 3
⊢ (𝑛 = (𝑚 + 1) → (1...𝑛) = (1...(𝑚 + 1))) |
| 8 | | fveq2 5561 |
. . 3
⊢ (𝑛 = (𝑚 + 1) → (◡𝐺‘𝑛) = (◡𝐺‘(𝑚 + 1))) |
| 9 | 7, 8 | breq12d 4047 |
. 2
⊢ (𝑛 = (𝑚 + 1) → ((1...𝑛) ≈ (◡𝐺‘𝑛) ↔ (1...(𝑚 + 1)) ≈ (◡𝐺‘(𝑚 + 1)))) |
| 10 | | oveq2 5933 |
. . 3
⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) |
| 11 | | fveq2 5561 |
. . 3
⊢ (𝑛 = 𝑁 → (◡𝐺‘𝑛) = (◡𝐺‘𝑁)) |
| 12 | 10, 11 | breq12d 4047 |
. 2
⊢ (𝑛 = 𝑁 → ((1...𝑛) ≈ (◡𝐺‘𝑛) ↔ (1...𝑁) ≈ (◡𝐺‘𝑁))) |
| 13 | | 0ex 4161 |
. . . 4
⊢ ∅
∈ V |
| 14 | 13 | enref 6833 |
. . 3
⊢ ∅
≈ ∅ |
| 15 | | fz10 10138 |
. . 3
⊢ (1...0) =
∅ |
| 16 | | 0zd 9355 |
. . . . . . 7
⊢ (⊤
→ 0 ∈ ℤ) |
| 17 | | frecfzennn.1 |
. . . . . . 7
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| 18 | 16, 17 | frec2uzf1od 10515 |
. . . . . 6
⊢ (⊤
→ 𝐺:ω–1-1-onto→(ℤ≥‘0)) |
| 19 | 18 | mptru 1373 |
. . . . 5
⊢ 𝐺:ω–1-1-onto→(ℤ≥‘0) |
| 20 | | peano1 4631 |
. . . . 5
⊢ ∅
∈ ω |
| 21 | 19, 20 | pm3.2i 272 |
. . . 4
⊢ (𝐺:ω–1-1-onto→(ℤ≥‘0) ∧ ∅
∈ ω) |
| 22 | 16, 17 | frec2uz0d 10508 |
. . . . 5
⊢ (⊤
→ (𝐺‘∅) =
0) |
| 23 | 22 | mptru 1373 |
. . . 4
⊢ (𝐺‘∅) =
0 |
| 24 | | f1ocnvfv 5829 |
. . . 4
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘0) ∧ ∅
∈ ω) → ((𝐺‘∅) = 0 → (◡𝐺‘0) = ∅)) |
| 25 | 21, 23, 24 | mp2 16 |
. . 3
⊢ (◡𝐺‘0) = ∅ |
| 26 | 14, 15, 25 | 3brtr4i 4064 |
. 2
⊢ (1...0)
≈ (◡𝐺‘0) |
| 27 | | simpr 110 |
. . . . 5
⊢ ((𝑚 ∈ ℕ0
∧ (1...𝑚) ≈
(◡𝐺‘𝑚)) → (1...𝑚) ≈ (◡𝐺‘𝑚)) |
| 28 | | peano2nn0 9306 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ0) |
| 29 | | zex 9352 |
. . . . . . . . . . . . . . 15
⊢ ℤ
∈ V |
| 30 | 29 | mptex 5791 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V |
| 31 | | vex 2766 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
| 32 | 30, 31 | fvex 5581 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V |
| 33 | 32 | ax-gen 1463 |
. . . . . . . . . . . 12
⊢
∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V |
| 34 | | 0z 9354 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℤ |
| 35 | | frecfnom 6468 |
. . . . . . . . . . . 12
⊢
((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 0 ∈ ℤ) →
frec((𝑥 ∈ ℤ
↦ (𝑥 + 1)), 0) Fn
ω) |
| 36 | 33, 34, 35 | mp2an 426 |
. . . . . . . . . . 11
⊢
frec((𝑥 ∈
ℤ ↦ (𝑥 + 1)),
0) Fn ω |
| 37 | 17 | fneq1i 5353 |
. . . . . . . . . . 11
⊢ (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn
ω) |
| 38 | 36, 37 | mpbir 146 |
. . . . . . . . . 10
⊢ 𝐺 Fn ω |
| 39 | | omex 4630 |
. . . . . . . . . 10
⊢ ω
∈ V |
| 40 | | fnex 5787 |
. . . . . . . . . 10
⊢ ((𝐺 Fn ω ∧ ω ∈
V) → 𝐺 ∈
V) |
| 41 | 38, 39, 40 | mp2an 426 |
. . . . . . . . 9
⊢ 𝐺 ∈ V |
| 42 | 41 | cnvex 5209 |
. . . . . . . 8
⊢ ◡𝐺 ∈ V |
| 43 | | vex 2766 |
. . . . . . . 8
⊢ 𝑚 ∈ V |
| 44 | 42, 43 | fvex 5581 |
. . . . . . 7
⊢ (◡𝐺‘𝑚) ∈ V |
| 45 | | en2sn 6881 |
. . . . . . 7
⊢ (((𝑚 + 1) ∈ ℕ0
∧ (◡𝐺‘𝑚) ∈ V) → {(𝑚 + 1)} ≈ {(◡𝐺‘𝑚)}) |
| 46 | 28, 44, 45 | sylancl 413 |
. . . . . 6
⊢ (𝑚 ∈ ℕ0
→ {(𝑚 + 1)} ≈
{(◡𝐺‘𝑚)}) |
| 47 | 46 | adantr 276 |
. . . . 5
⊢ ((𝑚 ∈ ℕ0
∧ (1...𝑚) ≈
(◡𝐺‘𝑚)) → {(𝑚 + 1)} ≈ {(◡𝐺‘𝑚)}) |
| 48 | | fzp1disj 10172 |
. . . . . 6
⊢
((1...𝑚) ∩
{(𝑚 + 1)}) =
∅ |
| 49 | 48 | a1i 9 |
. . . . 5
⊢ ((𝑚 ∈ ℕ0
∧ (1...𝑚) ≈
(◡𝐺‘𝑚)) → ((1...𝑚) ∩ {(𝑚 + 1)}) = ∅) |
| 50 | | f1ocnvdm 5831 |
. . . . . . . . . 10
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘0) ∧ 𝑚 ∈
(ℤ≥‘0)) → (◡𝐺‘𝑚) ∈ ω) |
| 51 | 19, 50 | mpan 424 |
. . . . . . . . 9
⊢ (𝑚 ∈
(ℤ≥‘0) → (◡𝐺‘𝑚) ∈ ω) |
| 52 | | nn0uz 9653 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
| 53 | 51, 52 | eleq2s 2291 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (◡𝐺‘𝑚) ∈ ω) |
| 54 | | nnord 4649 |
. . . . . . . 8
⊢ ((◡𝐺‘𝑚) ∈ ω → Ord (◡𝐺‘𝑚)) |
| 55 | | ordirr 4579 |
. . . . . . . 8
⊢ (Ord
(◡𝐺‘𝑚) → ¬ (◡𝐺‘𝑚) ∈ (◡𝐺‘𝑚)) |
| 56 | 53, 54, 55 | 3syl 17 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ ¬ (◡𝐺‘𝑚) ∈ (◡𝐺‘𝑚)) |
| 57 | 56 | adantr 276 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ (1...𝑚) ≈
(◡𝐺‘𝑚)) → ¬ (◡𝐺‘𝑚) ∈ (◡𝐺‘𝑚)) |
| 58 | | disjsn 3685 |
. . . . . 6
⊢ (((◡𝐺‘𝑚) ∩ {(◡𝐺‘𝑚)}) = ∅ ↔ ¬ (◡𝐺‘𝑚) ∈ (◡𝐺‘𝑚)) |
| 59 | 57, 58 | sylibr 134 |
. . . . 5
⊢ ((𝑚 ∈ ℕ0
∧ (1...𝑚) ≈
(◡𝐺‘𝑚)) → ((◡𝐺‘𝑚) ∩ {(◡𝐺‘𝑚)}) = ∅) |
| 60 | | unen 6884 |
. . . . 5
⊢
((((1...𝑚) ≈
(◡𝐺‘𝑚) ∧ {(𝑚 + 1)} ≈ {(◡𝐺‘𝑚)}) ∧ (((1...𝑚) ∩ {(𝑚 + 1)}) = ∅ ∧ ((◡𝐺‘𝑚) ∩ {(◡𝐺‘𝑚)}) = ∅)) → ((1...𝑚) ∪ {(𝑚 + 1)}) ≈ ((◡𝐺‘𝑚) ∪ {(◡𝐺‘𝑚)})) |
| 61 | 27, 47, 49, 59, 60 | syl22anc 1250 |
. . . 4
⊢ ((𝑚 ∈ ℕ0
∧ (1...𝑚) ≈
(◡𝐺‘𝑚)) → ((1...𝑚) ∪ {(𝑚 + 1)}) ≈ ((◡𝐺‘𝑚) ∪ {(◡𝐺‘𝑚)})) |
| 62 | | 1z 9369 |
. . . . . 6
⊢ 1 ∈
ℤ |
| 63 | | 1m1e0 9076 |
. . . . . . . . . 10
⊢ (1
− 1) = 0 |
| 64 | 63 | fveq2i 5564 |
. . . . . . . . 9
⊢
(ℤ≥‘(1 − 1)) =
(ℤ≥‘0) |
| 65 | 52, 64 | eqtr4i 2220 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘(1 −
1)) |
| 66 | 65 | eleq2i 2263 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
↔ 𝑚 ∈
(ℤ≥‘(1 − 1))) |
| 67 | 66 | biimpi 120 |
. . . . . 6
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
(ℤ≥‘(1 − 1))) |
| 68 | | fzsuc2 10171 |
. . . . . 6
⊢ ((1
∈ ℤ ∧ 𝑚
∈ (ℤ≥‘(1 − 1))) → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)})) |
| 69 | 62, 67, 68 | sylancr 414 |
. . . . 5
⊢ (𝑚 ∈ ℕ0
→ (1...(𝑚 + 1)) =
((1...𝑚) ∪ {(𝑚 + 1)})) |
| 70 | 69 | adantr 276 |
. . . 4
⊢ ((𝑚 ∈ ℕ0
∧ (1...𝑚) ≈
(◡𝐺‘𝑚)) → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)})) |
| 71 | | peano2 4632 |
. . . . . . . . 9
⊢ ((◡𝐺‘𝑚) ∈ ω → suc (◡𝐺‘𝑚) ∈ ω) |
| 72 | 53, 71 | syl 14 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ suc (◡𝐺‘𝑚) ∈ ω) |
| 73 | 72, 19 | jctil 312 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ (𝐺:ω–1-1-onto→(ℤ≥‘0) ∧ suc
(◡𝐺‘𝑚) ∈ ω)) |
| 74 | | 0zd 9355 |
. . . . . . . . . 10
⊢ ((◡𝐺‘𝑚) ∈ ω → 0 ∈
ℤ) |
| 75 | | id 19 |
. . . . . . . . . 10
⊢ ((◡𝐺‘𝑚) ∈ ω → (◡𝐺‘𝑚) ∈ ω) |
| 76 | 74, 17, 75 | frec2uzsucd 10510 |
. . . . . . . . 9
⊢ ((◡𝐺‘𝑚) ∈ ω → (𝐺‘suc (◡𝐺‘𝑚)) = ((𝐺‘(◡𝐺‘𝑚)) + 1)) |
| 77 | 53, 76 | syl 14 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (𝐺‘suc (◡𝐺‘𝑚)) = ((𝐺‘(◡𝐺‘𝑚)) + 1)) |
| 78 | 52 | eleq2i 2263 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
↔ 𝑚 ∈
(ℤ≥‘0)) |
| 79 | 78 | biimpi 120 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
(ℤ≥‘0)) |
| 80 | | f1ocnvfv2 5828 |
. . . . . . . . . 10
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘0) ∧ 𝑚 ∈
(ℤ≥‘0)) → (𝐺‘(◡𝐺‘𝑚)) = 𝑚) |
| 81 | 19, 79, 80 | sylancr 414 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ (𝐺‘(◡𝐺‘𝑚)) = 𝑚) |
| 82 | 81 | oveq1d 5940 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ ((𝐺‘(◡𝐺‘𝑚)) + 1) = (𝑚 + 1)) |
| 83 | 77, 82 | eqtrd 2229 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ (𝐺‘suc (◡𝐺‘𝑚)) = (𝑚 + 1)) |
| 84 | | f1ocnvfv 5829 |
. . . . . . 7
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘0) ∧ suc
(◡𝐺‘𝑚) ∈ ω) → ((𝐺‘suc (◡𝐺‘𝑚)) = (𝑚 + 1) → (◡𝐺‘(𝑚 + 1)) = suc (◡𝐺‘𝑚))) |
| 85 | 73, 83, 84 | sylc 62 |
. . . . . 6
⊢ (𝑚 ∈ ℕ0
→ (◡𝐺‘(𝑚 + 1)) = suc (◡𝐺‘𝑚)) |
| 86 | 85 | adantr 276 |
. . . . 5
⊢ ((𝑚 ∈ ℕ0
∧ (1...𝑚) ≈
(◡𝐺‘𝑚)) → (◡𝐺‘(𝑚 + 1)) = suc (◡𝐺‘𝑚)) |
| 87 | | df-suc 4407 |
. . . . 5
⊢ suc
(◡𝐺‘𝑚) = ((◡𝐺‘𝑚) ∪ {(◡𝐺‘𝑚)}) |
| 88 | 86, 87 | eqtrdi 2245 |
. . . 4
⊢ ((𝑚 ∈ ℕ0
∧ (1...𝑚) ≈
(◡𝐺‘𝑚)) → (◡𝐺‘(𝑚 + 1)) = ((◡𝐺‘𝑚) ∪ {(◡𝐺‘𝑚)})) |
| 89 | 61, 70, 88 | 3brtr4d 4066 |
. . 3
⊢ ((𝑚 ∈ ℕ0
∧ (1...𝑚) ≈
(◡𝐺‘𝑚)) → (1...(𝑚 + 1)) ≈ (◡𝐺‘(𝑚 + 1))) |
| 90 | 89 | ex 115 |
. 2
⊢ (𝑚 ∈ ℕ0
→ ((1...𝑚) ≈
(◡𝐺‘𝑚) → (1...(𝑚 + 1)) ≈ (◡𝐺‘(𝑚 + 1)))) |
| 91 | 3, 6, 9, 12, 26, 90 | nn0ind 9457 |
1
⊢ (𝑁 ∈ ℕ0
→ (1...𝑁) ≈
(◡𝐺‘𝑁)) |