ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfzennn GIF version

Theorem frecfzennn 10615
Description: The cardinality of a finite set of sequential integers. (See frec2uz0d 10588 for a description of the hypothesis.) (Contributed by Jim Kingdon, 18-May-2020.)
Hypothesis
Ref Expression
frecfzennn.1 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
frecfzennn (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (𝐺𝑁))

Proof of Theorem frecfzennn
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5982 . . 3 (𝑛 = 0 → (1...𝑛) = (1...0))
2 fveq2 5603 . . 3 (𝑛 = 0 → (𝐺𝑛) = (𝐺‘0))
31, 2breq12d 4075 . 2 (𝑛 = 0 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...0) ≈ (𝐺‘0)))
4 oveq2 5982 . . 3 (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚))
5 fveq2 5603 . . 3 (𝑛 = 𝑚 → (𝐺𝑛) = (𝐺𝑚))
64, 5breq12d 4075 . 2 (𝑛 = 𝑚 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...𝑚) ≈ (𝐺𝑚)))
7 oveq2 5982 . . 3 (𝑛 = (𝑚 + 1) → (1...𝑛) = (1...(𝑚 + 1)))
8 fveq2 5603 . . 3 (𝑛 = (𝑚 + 1) → (𝐺𝑛) = (𝐺‘(𝑚 + 1)))
97, 8breq12d 4075 . 2 (𝑛 = (𝑚 + 1) → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1))))
10 oveq2 5982 . . 3 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
11 fveq2 5603 . . 3 (𝑛 = 𝑁 → (𝐺𝑛) = (𝐺𝑁))
1210, 11breq12d 4075 . 2 (𝑛 = 𝑁 → ((1...𝑛) ≈ (𝐺𝑛) ↔ (1...𝑁) ≈ (𝐺𝑁)))
13 0ex 4190 . . . 4 ∅ ∈ V
1413enref 6886 . . 3 ∅ ≈ ∅
15 fz10 10210 . . 3 (1...0) = ∅
16 0zd 9426 . . . . . . 7 (⊤ → 0 ∈ ℤ)
17 frecfzennn.1 . . . . . . 7 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
1816, 17frec2uzf1od 10595 . . . . . 6 (⊤ → 𝐺:ω–1-1-onto→(ℤ‘0))
1918mptru 1384 . . . . 5 𝐺:ω–1-1-onto→(ℤ‘0)
20 peano1 4663 . . . . 5 ∅ ∈ ω
2119, 20pm3.2i 272 . . . 4 (𝐺:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω)
2216, 17frec2uz0d 10588 . . . . 5 (⊤ → (𝐺‘∅) = 0)
2322mptru 1384 . . . 4 (𝐺‘∅) = 0
24 f1ocnvfv 5876 . . . 4 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ ∅ ∈ ω) → ((𝐺‘∅) = 0 → (𝐺‘0) = ∅))
2521, 23, 24mp2 16 . . 3 (𝐺‘0) = ∅
2614, 15, 253brtr4i 4092 . 2 (1...0) ≈ (𝐺‘0)
27 simpr 110 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...𝑚) ≈ (𝐺𝑚))
28 peano2nn0 9377 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
29 zex 9423 . . . . . . . . . . . . . . 15 ℤ ∈ V
3029mptex 5838 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
31 vex 2782 . . . . . . . . . . . . . 14 𝑧 ∈ V
3230, 31fvex 5623 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
3332ax-gen 1475 . . . . . . . . . . . 12 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
34 0z 9425 . . . . . . . . . . . 12 0 ∈ ℤ
35 frecfnom 6517 . . . . . . . . . . . 12 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 0 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω)
3633, 34, 35mp2an 426 . . . . . . . . . . 11 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω
3717fneq1i 5391 . . . . . . . . . . 11 (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω)
3836, 37mpbir 146 . . . . . . . . . 10 𝐺 Fn ω
39 omex 4662 . . . . . . . . . 10 ω ∈ V
40 fnex 5834 . . . . . . . . . 10 ((𝐺 Fn ω ∧ ω ∈ V) → 𝐺 ∈ V)
4138, 39, 40mp2an 426 . . . . . . . . 9 𝐺 ∈ V
4241cnvex 5243 . . . . . . . 8 𝐺 ∈ V
43 vex 2782 . . . . . . . 8 𝑚 ∈ V
4442, 43fvex 5623 . . . . . . 7 (𝐺𝑚) ∈ V
45 en2sn 6936 . . . . . . 7 (((𝑚 + 1) ∈ ℕ0 ∧ (𝐺𝑚) ∈ V) → {(𝑚 + 1)} ≈ {(𝐺𝑚)})
4628, 44, 45sylancl 413 . . . . . 6 (𝑚 ∈ ℕ0 → {(𝑚 + 1)} ≈ {(𝐺𝑚)})
4746adantr 276 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → {(𝑚 + 1)} ≈ {(𝐺𝑚)})
48 fzp1disj 10244 . . . . . 6 ((1...𝑚) ∩ {(𝑚 + 1)}) = ∅
4948a1i 9 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((1...𝑚) ∩ {(𝑚 + 1)}) = ∅)
50 f1ocnvdm 5878 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑚 ∈ (ℤ‘0)) → (𝐺𝑚) ∈ ω)
5119, 50mpan 424 . . . . . . . . 9 (𝑚 ∈ (ℤ‘0) → (𝐺𝑚) ∈ ω)
52 nn0uz 9725 . . . . . . . . 9 0 = (ℤ‘0)
5351, 52eleq2s 2304 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝐺𝑚) ∈ ω)
54 nnord 4681 . . . . . . . 8 ((𝐺𝑚) ∈ ω → Ord (𝐺𝑚))
55 ordirr 4611 . . . . . . . 8 (Ord (𝐺𝑚) → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
5653, 54, 553syl 17 . . . . . . 7 (𝑚 ∈ ℕ0 → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
5756adantr 276 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ¬ (𝐺𝑚) ∈ (𝐺𝑚))
58 disjsn 3708 . . . . . 6 (((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅ ↔ ¬ (𝐺𝑚) ∈ (𝐺𝑚))
5957, 58sylibr 134 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅)
60 unen 6939 . . . . 5 ((((1...𝑚) ≈ (𝐺𝑚) ∧ {(𝑚 + 1)} ≈ {(𝐺𝑚)}) ∧ (((1...𝑚) ∩ {(𝑚 + 1)}) = ∅ ∧ ((𝐺𝑚) ∩ {(𝐺𝑚)}) = ∅)) → ((1...𝑚) ∪ {(𝑚 + 1)}) ≈ ((𝐺𝑚) ∪ {(𝐺𝑚)}))
6127, 47, 49, 59, 60syl22anc 1253 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → ((1...𝑚) ∪ {(𝑚 + 1)}) ≈ ((𝐺𝑚) ∪ {(𝐺𝑚)}))
62 1z 9440 . . . . . 6 1 ∈ ℤ
63 1m1e0 9147 . . . . . . . . . 10 (1 − 1) = 0
6463fveq2i 5606 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
6552, 64eqtr4i 2233 . . . . . . . 8 0 = (ℤ‘(1 − 1))
6665eleq2i 2276 . . . . . . 7 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘(1 − 1)))
6766biimpi 120 . . . . . 6 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘(1 − 1)))
68 fzsuc2 10243 . . . . . 6 ((1 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(1 − 1))) → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
6962, 67, 68sylancr 414 . . . . 5 (𝑚 ∈ ℕ0 → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
7069adantr 276 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...(𝑚 + 1)) = ((1...𝑚) ∪ {(𝑚 + 1)}))
71 peano2 4664 . . . . . . . . 9 ((𝐺𝑚) ∈ ω → suc (𝐺𝑚) ∈ ω)
7253, 71syl 14 . . . . . . . 8 (𝑚 ∈ ℕ0 → suc (𝐺𝑚) ∈ ω)
7372, 19jctil 312 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝐺:ω–1-1-onto→(ℤ‘0) ∧ suc (𝐺𝑚) ∈ ω))
74 0zd 9426 . . . . . . . . . 10 ((𝐺𝑚) ∈ ω → 0 ∈ ℤ)
75 id 19 . . . . . . . . . 10 ((𝐺𝑚) ∈ ω → (𝐺𝑚) ∈ ω)
7674, 17, 75frec2uzsucd 10590 . . . . . . . . 9 ((𝐺𝑚) ∈ ω → (𝐺‘suc (𝐺𝑚)) = ((𝐺‘(𝐺𝑚)) + 1))
7753, 76syl 14 . . . . . . . 8 (𝑚 ∈ ℕ0 → (𝐺‘suc (𝐺𝑚)) = ((𝐺‘(𝐺𝑚)) + 1))
7852eleq2i 2276 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘0))
7978biimpi 120 . . . . . . . . . 10 (𝑚 ∈ ℕ0𝑚 ∈ (ℤ‘0))
80 f1ocnvfv2 5875 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ 𝑚 ∈ (ℤ‘0)) → (𝐺‘(𝐺𝑚)) = 𝑚)
8119, 79, 80sylancr 414 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (𝐺‘(𝐺𝑚)) = 𝑚)
8281oveq1d 5989 . . . . . . . 8 (𝑚 ∈ ℕ0 → ((𝐺‘(𝐺𝑚)) + 1) = (𝑚 + 1))
8377, 82eqtrd 2242 . . . . . . 7 (𝑚 ∈ ℕ0 → (𝐺‘suc (𝐺𝑚)) = (𝑚 + 1))
84 f1ocnvfv 5876 . . . . . . 7 ((𝐺:ω–1-1-onto→(ℤ‘0) ∧ suc (𝐺𝑚) ∈ ω) → ((𝐺‘suc (𝐺𝑚)) = (𝑚 + 1) → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚)))
8573, 83, 84sylc 62 . . . . . 6 (𝑚 ∈ ℕ0 → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚))
8685adantr 276 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (𝐺‘(𝑚 + 1)) = suc (𝐺𝑚))
87 df-suc 4439 . . . . 5 suc (𝐺𝑚) = ((𝐺𝑚) ∪ {(𝐺𝑚)})
8886, 87eqtrdi 2258 . . . 4 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (𝐺‘(𝑚 + 1)) = ((𝐺𝑚) ∪ {(𝐺𝑚)}))
8961, 70, 883brtr4d 4094 . . 3 ((𝑚 ∈ ℕ0 ∧ (1...𝑚) ≈ (𝐺𝑚)) → (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1)))
9089ex 115 . 2 (𝑚 ∈ ℕ0 → ((1...𝑚) ≈ (𝐺𝑚) → (1...(𝑚 + 1)) ≈ (𝐺‘(𝑚 + 1))))
913, 6, 9, 12, 26, 90nn0ind 9529 1 (𝑁 ∈ ℕ0 → (1...𝑁) ≈ (𝐺𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1373   = wceq 1375  wtru 1376  wcel 2180  Vcvv 2779  cun 3175  cin 3176  c0 3471  {csn 3646   class class class wbr 4062  cmpt 4124  Ord word 4430  suc csuc 4433  ωcom 4659  ccnv 4695   Fn wfn 5289  1-1-ontowf1o 5293  cfv 5294  (class class class)co 5974  freccfrec 6506  cen 6855  0cc0 7967  1c1 7968   + caddc 7970  cmin 8285  0cn0 9337  cz 9414  cuz 9690  ...cfz 10172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-recs 6421  df-frec 6507  df-1o 6532  df-er 6650  df-en 6858  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173
This theorem is referenced by:  frecfzen2  10616  hashfz1  10972
  Copyright terms: Public domain W3C validator