| Step | Hyp | Ref
| Expression |
| 1 | | inss2 3385 |
. . . 4
⊢ (𝑅 ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵) |
| 2 | | relxp 4773 |
. . . 4
⊢ Rel
(𝐵 × 𝐵) |
| 3 | | relss 4751 |
. . . 4
⊢ ((𝑅 ∩ (𝐵 × 𝐵)) ⊆ (𝐵 × 𝐵) → (Rel (𝐵 × 𝐵) → Rel (𝑅 ∩ (𝐵 × 𝐵)))) |
| 4 | 1, 2, 3 | mp2 16 |
. . 3
⊢ Rel
(𝑅 ∩ (𝐵 × 𝐵)) |
| 5 | 4 | a1i 9 |
. 2
⊢ (𝜑 → Rel (𝑅 ∩ (𝐵 × 𝐵))) |
| 6 | | simpr 110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) |
| 7 | | brinxp2 4731 |
. . . . 5
⊢ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥𝑅𝑦)) |
| 8 | 6, 7 | sylib 122 |
. . . 4
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥𝑅𝑦)) |
| 9 | 8 | simp2d 1012 |
. . 3
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦 ∈ 𝐵) |
| 10 | 8 | simp1d 1011 |
. . 3
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥 ∈ 𝐵) |
| 11 | | erinxp.r |
. . . . 5
⊢ (𝜑 → 𝑅 Er 𝐴) |
| 12 | 11 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑅 Er 𝐴) |
| 13 | 8 | simp3d 1013 |
. . . 4
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥𝑅𝑦) |
| 14 | 12, 13 | ersym 6613 |
. . 3
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦𝑅𝑥) |
| 15 | | brinxp2 4731 |
. . 3
⊢ (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦𝑅𝑥)) |
| 16 | 9, 10, 14, 15 | syl3anbrc 1183 |
. 2
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥) |
| 17 | 10 | adantrr 479 |
. . 3
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥 ∈ 𝐵) |
| 18 | | simprr 531 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧) |
| 19 | | brinxp2 4731 |
. . . . 5
⊢ (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑦𝑅𝑧)) |
| 20 | 18, 19 | sylib 122 |
. . . 4
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑦𝑅𝑧)) |
| 21 | 20 | simp2d 1012 |
. . 3
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑧 ∈ 𝐵) |
| 22 | 11 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑅 Er 𝐴) |
| 23 | 13 | adantrr 479 |
. . . 4
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑦) |
| 24 | 20 | simp3d 1013 |
. . . 4
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦𝑅𝑧) |
| 25 | 22, 23, 24 | ertrd 6617 |
. . 3
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑧) |
| 26 | | brinxp2 4731 |
. . 3
⊢ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ (𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑥𝑅𝑧)) |
| 27 | 17, 21, 25, 26 | syl3anbrc 1183 |
. 2
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧) |
| 28 | 11 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 Er 𝐴) |
| 29 | | erinxp.a |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 30 | 29 | sselda 3184 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
| 31 | 28, 30 | erref 6621 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥𝑅𝑥) |
| 32 | 31 | ex 115 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥𝑅𝑥)) |
| 33 | 32 | pm4.71rd 394 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ (𝑥𝑅𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 34 | | brin 4086 |
. . . 4
⊢ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥 ∧ 𝑥(𝐵 × 𝐵)𝑥)) |
| 35 | | brxp 4695 |
. . . . . 6
⊢ (𝑥(𝐵 × 𝐵)𝑥 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) |
| 36 | | anidm 396 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵) |
| 37 | 35, 36 | bitri 184 |
. . . . 5
⊢ (𝑥(𝐵 × 𝐵)𝑥 ↔ 𝑥 ∈ 𝐵) |
| 38 | 37 | anbi2i 457 |
. . . 4
⊢ ((𝑥𝑅𝑥 ∧ 𝑥(𝐵 × 𝐵)𝑥) ↔ (𝑥𝑅𝑥 ∧ 𝑥 ∈ 𝐵)) |
| 39 | 34, 38 | bitri 184 |
. . 3
⊢ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥 ∧ 𝑥 ∈ 𝐵)) |
| 40 | 33, 39 | bitr4di 198 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥)) |
| 41 | 5, 16, 27, 40 | iserd 6627 |
1
⊢ (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵) |