ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnnen GIF version

Theorem qnnen 12624
Description: The rational numbers are countably infinite. Corollary 8.1.23 of [AczelRathjen], p. 75. This is Metamath 100 proof #3. (Contributed by Jim Kingdon, 11-Aug-2023.)
Assertion
Ref Expression
qnnen ℚ ≈ ℕ

Proof of Theorem qnnen
Dummy variables 𝑓 𝑔 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qdceq 10320 . . 3 ((𝑝 ∈ ℚ ∧ 𝑞 ∈ ℚ) → DECID 𝑝 = 𝑞)
21rgen2a 2551 . 2 𝑝 ∈ ℚ ∀𝑞 ∈ ℚ DECID 𝑝 = 𝑞
3 znnen 12591 . . . . . . . 8 ℤ ≈ ℕ
4 nnex 8993 . . . . . . . . 9 ℕ ∈ V
54enref 6824 . . . . . . . 8 ℕ ≈ ℕ
6 xpen 6906 . . . . . . . 8 ((ℤ ≈ ℕ ∧ ℕ ≈ ℕ) → (ℤ × ℕ) ≈ (ℕ × ℕ))
73, 5, 6mp2an 426 . . . . . . 7 (ℤ × ℕ) ≈ (ℕ × ℕ)
8 xpnnen 12587 . . . . . . 7 (ℕ × ℕ) ≈ ℕ
97, 8entri 6845 . . . . . 6 (ℤ × ℕ) ≈ ℕ
10 nnenom 10511 . . . . . 6 ℕ ≈ ω
119, 10entri 6845 . . . . 5 (ℤ × ℕ) ≈ ω
1211ensymi 6841 . . . 4 ω ≈ (ℤ × ℕ)
13 bren 6806 . . . 4 (ω ≈ (ℤ × ℕ) ↔ ∃𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ))
1412, 13mpbi 145 . . 3 𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ)
15 f1ofo 5511 . . . . 5 (𝑔:ω–1-1-onto→(ℤ × ℕ) → 𝑔:ω–onto→(ℤ × ℕ))
16 divfnzn 9692 . . . . . . . . 9 ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)
17 fnfun 5355 . . . . . . . . 9 (( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) → Fun ( / ↾ (ℤ × ℕ)))
1816, 17ax-mp 5 . . . . . . . 8 Fun ( / ↾ (ℤ × ℕ))
19 fndm 5357 . . . . . . . . 9 (( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) → dom ( / ↾ (ℤ × ℕ)) = (ℤ × ℕ))
20 eqimss2 3238 . . . . . . . . 9 (dom ( / ↾ (ℤ × ℕ)) = (ℤ × ℕ) → (ℤ × ℕ) ⊆ dom ( / ↾ (ℤ × ℕ)))
2116, 19, 20mp2b 8 . . . . . . . 8 (ℤ × ℕ) ⊆ dom ( / ↾ (ℤ × ℕ))
22 fores 5490 . . . . . . . 8 ((Fun ( / ↾ (ℤ × ℕ)) ∧ (ℤ × ℕ) ⊆ dom ( / ↾ (ℤ × ℕ))) → (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→(( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)))
2318, 21, 22mp2an 426 . . . . . . 7 (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→(( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ))
24 resima 4979 . . . . . . . . 9 (( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ( / “ (ℤ × ℕ))
25 df-q 9691 . . . . . . . . 9 ℚ = ( / “ (ℤ × ℕ))
2624, 25eqtr4i 2220 . . . . . . . 8 (( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ℚ
27 foeq3 5478 . . . . . . . 8 ((( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ℚ → ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→(( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) ↔ (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→ℚ))
2826, 27ax-mp 5 . . . . . . 7 ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→(( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) ↔ (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→ℚ)
2923, 28mpbi 145 . . . . . 6 (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→ℚ
30 foco 5491 . . . . . 6 (((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→ℚ ∧ 𝑔:ω–onto→(ℤ × ℕ)) → ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ)
3129, 30mpan 424 . . . . 5 (𝑔:ω–onto→(ℤ × ℕ) → ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ)
32 zex 9332 . . . . . . . . 9 ℤ ∈ V
3332, 4xpex 4778 . . . . . . . 8 (ℤ × ℕ) ∈ V
34 resfunexg 5783 . . . . . . . 8 ((Fun ( / ↾ (ℤ × ℕ)) ∧ (ℤ × ℕ) ∈ V) → (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∈ V)
3518, 33, 34mp2an 426 . . . . . . 7 (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∈ V
36 vex 2766 . . . . . . 7 𝑔 ∈ V
3735, 36coex 5215 . . . . . 6 ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔) ∈ V
38 foeq1 5476 . . . . . 6 (𝑓 = ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔) → (𝑓:ω–onto→ℚ ↔ ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ))
3937, 38spcev 2859 . . . . 5 (((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ → ∃𝑓 𝑓:ω–onto→ℚ)
4015, 31, 393syl 17 . . . 4 (𝑔:ω–1-1-onto→(ℤ × ℕ) → ∃𝑓 𝑓:ω–onto→ℚ)
4140exlimiv 1612 . . 3 (∃𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ) → ∃𝑓 𝑓:ω–onto→ℚ)
4214, 41ax-mp 5 . 2 𝑓 𝑓:ω–onto→ℚ
4310ensymi 6841 . . 3 ω ≈ ℕ
44 qex 9703 . . . 4 ℚ ∈ V
45 nnssq 9700 . . . 4 ℕ ⊆ ℚ
46 ssdomg 6837 . . . 4 (ℚ ∈ V → (ℕ ⊆ ℚ → ℕ ≼ ℚ))
4744, 45, 46mp2 16 . . 3 ℕ ≼ ℚ
48 endomtr 6849 . . 3 ((ω ≈ ℕ ∧ ℕ ≼ ℚ) → ω ≼ ℚ)
4943, 47, 48mp2an 426 . 2 ω ≼ ℚ
50 ctinf 12623 . 2 (ℚ ≈ ℕ ↔ (∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ DECID 𝑝 = 𝑞 ∧ ∃𝑓 𝑓:ω–onto→ℚ ∧ ω ≼ ℚ))
512, 42, 49, 50mpbir3an 1181 1 ℚ ≈ ℕ
Colors of variables: wff set class
Syntax hints:  wb 105  DECID wdc 835   = wceq 1364  wex 1506  wcel 2167  wral 2475  Vcvv 2763  wss 3157   class class class wbr 4033  ωcom 4626   × cxp 4661  dom cdm 4663  cres 4665  cima 4666  ccom 4667  Fun wfun 5252   Fn wfn 5253  ontowfo 5256  1-1-ontowf1o 5257  cen 6797  cdom 6798   / cdiv 8696  cn 8987  cz 9323  cq 9690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-dju 7102  df-inl 7111  df-inr 7112  df-case 7148  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-n0 9247  df-z 9324  df-uz 9599  df-q 9691  df-rp 9726  df-fz 10081  df-fl 10345  df-mod 10400  df-seqfrec 10525  df-exp 10616  df-dvds 11937
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator