| Step | Hyp | Ref
| Expression |
| 1 | | qdceq 10336 |
. . 3
⊢ ((𝑝 ∈ ℚ ∧ 𝑞 ∈ ℚ) →
DECID 𝑝 =
𝑞) |
| 2 | 1 | rgen2a 2551 |
. 2
⊢
∀𝑝 ∈
ℚ ∀𝑞 ∈
ℚ DECID 𝑝 = 𝑞 |
| 3 | | znnen 12625 |
. . . . . . . 8
⊢ ℤ
≈ ℕ |
| 4 | | nnex 8998 |
. . . . . . . . 9
⊢ ℕ
∈ V |
| 5 | 4 | enref 6825 |
. . . . . . . 8
⊢ ℕ
≈ ℕ |
| 6 | | xpen 6907 |
. . . . . . . 8
⊢ ((ℤ
≈ ℕ ∧ ℕ ≈ ℕ) → (ℤ × ℕ)
≈ (ℕ × ℕ)) |
| 7 | 3, 5, 6 | mp2an 426 |
. . . . . . 7
⊢ (ℤ
× ℕ) ≈ (ℕ × ℕ) |
| 8 | | xpnnen 12621 |
. . . . . . 7
⊢ (ℕ
× ℕ) ≈ ℕ |
| 9 | 7, 8 | entri 6846 |
. . . . . 6
⊢ (ℤ
× ℕ) ≈ ℕ |
| 10 | | nnenom 10528 |
. . . . . 6
⊢ ℕ
≈ ω |
| 11 | 9, 10 | entri 6846 |
. . . . 5
⊢ (ℤ
× ℕ) ≈ ω |
| 12 | 11 | ensymi 6842 |
. . . 4
⊢ ω
≈ (ℤ × ℕ) |
| 13 | | bren 6807 |
. . . 4
⊢ (ω
≈ (ℤ × ℕ) ↔ ∃𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ)) |
| 14 | 12, 13 | mpbi 145 |
. . 3
⊢
∃𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ) |
| 15 | | f1ofo 5512 |
. . . . 5
⊢ (𝑔:ω–1-1-onto→(ℤ × ℕ) → 𝑔:ω–onto→(ℤ × ℕ)) |
| 16 | | divfnzn 9697 |
. . . . . . . . 9
⊢ ( /
↾ (ℤ × ℕ)) Fn (ℤ ×
ℕ) |
| 17 | | fnfun 5356 |
. . . . . . . . 9
⊢ (( /
↾ (ℤ × ℕ)) Fn (ℤ × ℕ) → Fun ( /
↾ (ℤ × ℕ))) |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
⊢ Fun ( /
↾ (ℤ × ℕ)) |
| 19 | | fndm 5358 |
. . . . . . . . 9
⊢ (( /
↾ (ℤ × ℕ)) Fn (ℤ × ℕ) → dom ( /
↾ (ℤ × ℕ)) = (ℤ ×
ℕ)) |
| 20 | | eqimss2 3239 |
. . . . . . . . 9
⊢ (dom ( /
↾ (ℤ × ℕ)) = (ℤ × ℕ) → (ℤ
× ℕ) ⊆ dom ( / ↾ (ℤ ×
ℕ))) |
| 21 | 16, 19, 20 | mp2b 8 |
. . . . . . . 8
⊢ (ℤ
× ℕ) ⊆ dom ( / ↾ (ℤ ×
ℕ)) |
| 22 | | fores 5491 |
. . . . . . . 8
⊢ ((Fun ( /
↾ (ℤ × ℕ)) ∧ (ℤ × ℕ) ⊆ dom
( / ↾ (ℤ × ℕ))) → (( / ↾ (ℤ ×
ℕ)) ↾ (ℤ × ℕ)):(ℤ ×
ℕ)–onto→(( / ↾
(ℤ × ℕ)) “ (ℤ × ℕ))) |
| 23 | 18, 21, 22 | mp2an 426 |
. . . . . . 7
⊢ (( /
↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ
× ℕ)–onto→(( /
↾ (ℤ × ℕ)) “ (ℤ ×
ℕ)) |
| 24 | | resima 4980 |
. . . . . . . . 9
⊢ (( /
↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ( /
“ (ℤ × ℕ)) |
| 25 | | df-q 9696 |
. . . . . . . . 9
⊢ ℚ =
( / “ (ℤ × ℕ)) |
| 26 | 24, 25 | eqtr4i 2220 |
. . . . . . . 8
⊢ (( /
↾ (ℤ × ℕ)) “ (ℤ × ℕ)) =
ℚ |
| 27 | | foeq3 5479 |
. . . . . . . 8
⊢ ((( /
↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ℚ
→ ((( / ↾ (ℤ × ℕ)) ↾ (ℤ ×
ℕ)):(ℤ × ℕ)–onto→(( / ↾ (ℤ × ℕ))
“ (ℤ × ℕ)) ↔ (( / ↾ (ℤ ×
ℕ)) ↾ (ℤ × ℕ)):(ℤ ×
ℕ)–onto→ℚ)) |
| 28 | 26, 27 | ax-mp 5 |
. . . . . . 7
⊢ ((( /
↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ
× ℕ)–onto→(( /
↾ (ℤ × ℕ)) “ (ℤ × ℕ)) ↔ ((
/ ↾ (ℤ × ℕ)) ↾ (ℤ ×
ℕ)):(ℤ × ℕ)–onto→ℚ) |
| 29 | 23, 28 | mpbi 145 |
. . . . . 6
⊢ (( /
↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ
× ℕ)–onto→ℚ |
| 30 | | foco 5492 |
. . . . . 6
⊢ (((( /
↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ
× ℕ)–onto→ℚ
∧ 𝑔:ω–onto→(ℤ × ℕ)) → (((
/ ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘
𝑔):ω–onto→ℚ) |
| 31 | 29, 30 | mpan 424 |
. . . . 5
⊢ (𝑔:ω–onto→(ℤ × ℕ) → ((( / ↾
(ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ) |
| 32 | | zex 9337 |
. . . . . . . . 9
⊢ ℤ
∈ V |
| 33 | 32, 4 | xpex 4779 |
. . . . . . . 8
⊢ (ℤ
× ℕ) ∈ V |
| 34 | | resfunexg 5784 |
. . . . . . . 8
⊢ ((Fun ( /
↾ (ℤ × ℕ)) ∧ (ℤ × ℕ) ∈ V)
→ (( / ↾ (ℤ × ℕ)) ↾ (ℤ ×
ℕ)) ∈ V) |
| 35 | 18, 33, 34 | mp2an 426 |
. . . . . . 7
⊢ (( /
↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∈
V |
| 36 | | vex 2766 |
. . . . . . 7
⊢ 𝑔 ∈ V |
| 37 | 35, 36 | coex 5216 |
. . . . . 6
⊢ ((( /
↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘
𝑔) ∈
V |
| 38 | | foeq1 5477 |
. . . . . 6
⊢ (𝑓 = ((( / ↾ (ℤ
× ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔) → (𝑓:ω–onto→ℚ ↔ ((( / ↾ (ℤ ×
ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ)) |
| 39 | 37, 38 | spcev 2859 |
. . . . 5
⊢ (((( /
↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘
𝑔):ω–onto→ℚ → ∃𝑓 𝑓:ω–onto→ℚ) |
| 40 | 15, 31, 39 | 3syl 17 |
. . . 4
⊢ (𝑔:ω–1-1-onto→(ℤ × ℕ) → ∃𝑓 𝑓:ω–onto→ℚ) |
| 41 | 40 | exlimiv 1612 |
. . 3
⊢
(∃𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ) → ∃𝑓 𝑓:ω–onto→ℚ) |
| 42 | 14, 41 | ax-mp 5 |
. 2
⊢
∃𝑓 𝑓:ω–onto→ℚ |
| 43 | 10 | ensymi 6842 |
. . 3
⊢ ω
≈ ℕ |
| 44 | | qex 9708 |
. . . 4
⊢ ℚ
∈ V |
| 45 | | nnssq 9705 |
. . . 4
⊢ ℕ
⊆ ℚ |
| 46 | | ssdomg 6838 |
. . . 4
⊢ (ℚ
∈ V → (ℕ ⊆ ℚ → ℕ ≼
ℚ)) |
| 47 | 44, 45, 46 | mp2 16 |
. . 3
⊢ ℕ
≼ ℚ |
| 48 | | endomtr 6850 |
. . 3
⊢ ((ω
≈ ℕ ∧ ℕ ≼ ℚ) → ω ≼
ℚ) |
| 49 | 43, 47, 48 | mp2an 426 |
. 2
⊢ ω
≼ ℚ |
| 50 | | ctinf 12657 |
. 2
⊢ (ℚ
≈ ℕ ↔ (∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ DECID 𝑝 = 𝑞 ∧ ∃𝑓 𝑓:ω–onto→ℚ ∧ ω ≼
ℚ)) |
| 51 | 2, 42, 49, 50 | mpbir3an 1181 |
1
⊢ ℚ
≈ ℕ |