ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnnen GIF version

Theorem qnnen 12482
Description: The rational numbers are countably infinite. Corollary 8.1.23 of [AczelRathjen], p. 75. This is Metamath 100 proof #3. (Contributed by Jim Kingdon, 11-Aug-2023.)
Assertion
Ref Expression
qnnen ℚ ≈ ℕ

Proof of Theorem qnnen
Dummy variables 𝑓 𝑔 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qdceq 10277 . . 3 ((𝑝 ∈ ℚ ∧ 𝑞 ∈ ℚ) → DECID 𝑝 = 𝑞)
21rgen2a 2544 . 2 𝑝 ∈ ℚ ∀𝑞 ∈ ℚ DECID 𝑝 = 𝑞
3 znnen 12449 . . . . . . . 8 ℤ ≈ ℕ
4 nnex 8955 . . . . . . . . 9 ℕ ∈ V
54enref 6791 . . . . . . . 8 ℕ ≈ ℕ
6 xpen 6873 . . . . . . . 8 ((ℤ ≈ ℕ ∧ ℕ ≈ ℕ) → (ℤ × ℕ) ≈ (ℕ × ℕ))
73, 5, 6mp2an 426 . . . . . . 7 (ℤ × ℕ) ≈ (ℕ × ℕ)
8 xpnnen 12445 . . . . . . 7 (ℕ × ℕ) ≈ ℕ
97, 8entri 6812 . . . . . 6 (ℤ × ℕ) ≈ ℕ
10 nnenom 10465 . . . . . 6 ℕ ≈ ω
119, 10entri 6812 . . . . 5 (ℤ × ℕ) ≈ ω
1211ensymi 6808 . . . 4 ω ≈ (ℤ × ℕ)
13 bren 6773 . . . 4 (ω ≈ (ℤ × ℕ) ↔ ∃𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ))
1412, 13mpbi 145 . . 3 𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ)
15 f1ofo 5487 . . . . 5 (𝑔:ω–1-1-onto→(ℤ × ℕ) → 𝑔:ω–onto→(ℤ × ℕ))
16 divfnzn 9651 . . . . . . . . 9 ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)
17 fnfun 5332 . . . . . . . . 9 (( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) → Fun ( / ↾ (ℤ × ℕ)))
1816, 17ax-mp 5 . . . . . . . 8 Fun ( / ↾ (ℤ × ℕ))
19 fndm 5334 . . . . . . . . 9 (( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) → dom ( / ↾ (ℤ × ℕ)) = (ℤ × ℕ))
20 eqimss2 3225 . . . . . . . . 9 (dom ( / ↾ (ℤ × ℕ)) = (ℤ × ℕ) → (ℤ × ℕ) ⊆ dom ( / ↾ (ℤ × ℕ)))
2116, 19, 20mp2b 8 . . . . . . . 8 (ℤ × ℕ) ⊆ dom ( / ↾ (ℤ × ℕ))
22 fores 5466 . . . . . . . 8 ((Fun ( / ↾ (ℤ × ℕ)) ∧ (ℤ × ℕ) ⊆ dom ( / ↾ (ℤ × ℕ))) → (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→(( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)))
2318, 21, 22mp2an 426 . . . . . . 7 (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→(( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ))
24 resima 4958 . . . . . . . . 9 (( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ( / “ (ℤ × ℕ))
25 df-q 9650 . . . . . . . . 9 ℚ = ( / “ (ℤ × ℕ))
2624, 25eqtr4i 2213 . . . . . . . 8 (( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ℚ
27 foeq3 5455 . . . . . . . 8 ((( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ℚ → ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→(( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) ↔ (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→ℚ))
2826, 27ax-mp 5 . . . . . . 7 ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→(( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) ↔ (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→ℚ)
2923, 28mpbi 145 . . . . . 6 (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→ℚ
30 foco 5467 . . . . . 6 (((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→ℚ ∧ 𝑔:ω–onto→(ℤ × ℕ)) → ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ)
3129, 30mpan 424 . . . . 5 (𝑔:ω–onto→(ℤ × ℕ) → ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ)
32 zex 9292 . . . . . . . . 9 ℤ ∈ V
3332, 4xpex 4759 . . . . . . . 8 (ℤ × ℕ) ∈ V
34 resfunexg 5758 . . . . . . . 8 ((Fun ( / ↾ (ℤ × ℕ)) ∧ (ℤ × ℕ) ∈ V) → (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∈ V)
3518, 33, 34mp2an 426 . . . . . . 7 (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∈ V
36 vex 2755 . . . . . . 7 𝑔 ∈ V
3735, 36coex 5192 . . . . . 6 ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔) ∈ V
38 foeq1 5453 . . . . . 6 (𝑓 = ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔) → (𝑓:ω–onto→ℚ ↔ ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ))
3937, 38spcev 2847 . . . . 5 (((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ → ∃𝑓 𝑓:ω–onto→ℚ)
4015, 31, 393syl 17 . . . 4 (𝑔:ω–1-1-onto→(ℤ × ℕ) → ∃𝑓 𝑓:ω–onto→ℚ)
4140exlimiv 1609 . . 3 (∃𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ) → ∃𝑓 𝑓:ω–onto→ℚ)
4214, 41ax-mp 5 . 2 𝑓 𝑓:ω–onto→ℚ
4310ensymi 6808 . . 3 ω ≈ ℕ
44 qex 9662 . . . 4 ℚ ∈ V
45 nnssq 9659 . . . 4 ℕ ⊆ ℚ
46 ssdomg 6804 . . . 4 (ℚ ∈ V → (ℕ ⊆ ℚ → ℕ ≼ ℚ))
4744, 45, 46mp2 16 . . 3 ℕ ≼ ℚ
48 endomtr 6816 . . 3 ((ω ≈ ℕ ∧ ℕ ≼ ℚ) → ω ≼ ℚ)
4943, 47, 48mp2an 426 . 2 ω ≼ ℚ
50 ctinf 12481 . 2 (ℚ ≈ ℕ ↔ (∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ DECID 𝑝 = 𝑞 ∧ ∃𝑓 𝑓:ω–onto→ℚ ∧ ω ≼ ℚ))
512, 42, 49, 50mpbir3an 1181 1 ℚ ≈ ℕ
Colors of variables: wff set class
Syntax hints:  wb 105  DECID wdc 835   = wceq 1364  wex 1503  wcel 2160  wral 2468  Vcvv 2752  wss 3144   class class class wbr 4018  ωcom 4607   × cxp 4642  dom cdm 4644  cres 4646  cima 4647  ccom 4648  Fun wfun 5229   Fn wfn 5230  ontowfo 5233  1-1-ontowf1o 5234  cen 6764  cdom 6765   / cdiv 8659  cn 8949  cz 9283  cq 9649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-1o 6441  df-er 6559  df-pm 6677  df-en 6767  df-dom 6768  df-fin 6769  df-dju 7067  df-inl 7076  df-inr 7077  df-case 7113  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fl 10301  df-mod 10354  df-seqfrec 10477  df-exp 10551  df-dvds 11827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator