Step | Hyp | Ref
| Expression |
1 | | qdceq 10203 |
. . 3
⊢ ((𝑝 ∈ ℚ ∧ 𝑞 ∈ ℚ) →
DECID 𝑝 =
𝑞) |
2 | 1 | rgen2a 2524 |
. 2
⊢
∀𝑝 ∈
ℚ ∀𝑞 ∈
ℚ DECID 𝑝 = 𝑞 |
3 | | znnen 12353 |
. . . . . . . 8
⊢ ℤ
≈ ℕ |
4 | | nnex 8884 |
. . . . . . . . 9
⊢ ℕ
∈ V |
5 | 4 | enref 6743 |
. . . . . . . 8
⊢ ℕ
≈ ℕ |
6 | | xpen 6823 |
. . . . . . . 8
⊢ ((ℤ
≈ ℕ ∧ ℕ ≈ ℕ) → (ℤ × ℕ)
≈ (ℕ × ℕ)) |
7 | 3, 5, 6 | mp2an 424 |
. . . . . . 7
⊢ (ℤ
× ℕ) ≈ (ℕ × ℕ) |
8 | | xpnnen 12349 |
. . . . . . 7
⊢ (ℕ
× ℕ) ≈ ℕ |
9 | 7, 8 | entri 6764 |
. . . . . 6
⊢ (ℤ
× ℕ) ≈ ℕ |
10 | | nnenom 10390 |
. . . . . 6
⊢ ℕ
≈ ω |
11 | 9, 10 | entri 6764 |
. . . . 5
⊢ (ℤ
× ℕ) ≈ ω |
12 | 11 | ensymi 6760 |
. . . 4
⊢ ω
≈ (ℤ × ℕ) |
13 | | bren 6725 |
. . . 4
⊢ (ω
≈ (ℤ × ℕ) ↔ ∃𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ)) |
14 | 12, 13 | mpbi 144 |
. . 3
⊢
∃𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ) |
15 | | f1ofo 5449 |
. . . . 5
⊢ (𝑔:ω–1-1-onto→(ℤ × ℕ) → 𝑔:ω–onto→(ℤ × ℕ)) |
16 | | divfnzn 9580 |
. . . . . . . . 9
⊢ ( /
↾ (ℤ × ℕ)) Fn (ℤ ×
ℕ) |
17 | | fnfun 5295 |
. . . . . . . . 9
⊢ (( /
↾ (ℤ × ℕ)) Fn (ℤ × ℕ) → Fun ( /
↾ (ℤ × ℕ))) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
⊢ Fun ( /
↾ (ℤ × ℕ)) |
19 | | fndm 5297 |
. . . . . . . . 9
⊢ (( /
↾ (ℤ × ℕ)) Fn (ℤ × ℕ) → dom ( /
↾ (ℤ × ℕ)) = (ℤ ×
ℕ)) |
20 | | eqimss2 3202 |
. . . . . . . . 9
⊢ (dom ( /
↾ (ℤ × ℕ)) = (ℤ × ℕ) → (ℤ
× ℕ) ⊆ dom ( / ↾ (ℤ ×
ℕ))) |
21 | 16, 19, 20 | mp2b 8 |
. . . . . . . 8
⊢ (ℤ
× ℕ) ⊆ dom ( / ↾ (ℤ ×
ℕ)) |
22 | | fores 5429 |
. . . . . . . 8
⊢ ((Fun ( /
↾ (ℤ × ℕ)) ∧ (ℤ × ℕ) ⊆ dom
( / ↾ (ℤ × ℕ))) → (( / ↾ (ℤ ×
ℕ)) ↾ (ℤ × ℕ)):(ℤ ×
ℕ)–onto→(( / ↾
(ℤ × ℕ)) “ (ℤ × ℕ))) |
23 | 18, 21, 22 | mp2an 424 |
. . . . . . 7
⊢ (( /
↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ
× ℕ)–onto→(( /
↾ (ℤ × ℕ)) “ (ℤ ×
ℕ)) |
24 | | resima 4924 |
. . . . . . . . 9
⊢ (( /
↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ( /
“ (ℤ × ℕ)) |
25 | | df-q 9579 |
. . . . . . . . 9
⊢ ℚ =
( / “ (ℤ × ℕ)) |
26 | 24, 25 | eqtr4i 2194 |
. . . . . . . 8
⊢ (( /
↾ (ℤ × ℕ)) “ (ℤ × ℕ)) =
ℚ |
27 | | foeq3 5418 |
. . . . . . . 8
⊢ ((( /
↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ℚ
→ ((( / ↾ (ℤ × ℕ)) ↾ (ℤ ×
ℕ)):(ℤ × ℕ)–onto→(( / ↾ (ℤ × ℕ))
“ (ℤ × ℕ)) ↔ (( / ↾ (ℤ ×
ℕ)) ↾ (ℤ × ℕ)):(ℤ ×
ℕ)–onto→ℚ)) |
28 | 26, 27 | ax-mp 5 |
. . . . . . 7
⊢ ((( /
↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ
× ℕ)–onto→(( /
↾ (ℤ × ℕ)) “ (ℤ × ℕ)) ↔ ((
/ ↾ (ℤ × ℕ)) ↾ (ℤ ×
ℕ)):(ℤ × ℕ)–onto→ℚ) |
29 | 23, 28 | mpbi 144 |
. . . . . 6
⊢ (( /
↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ
× ℕ)–onto→ℚ |
30 | | foco 5430 |
. . . . . 6
⊢ (((( /
↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ
× ℕ)–onto→ℚ
∧ 𝑔:ω–onto→(ℤ × ℕ)) → (((
/ ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘
𝑔):ω–onto→ℚ) |
31 | 29, 30 | mpan 422 |
. . . . 5
⊢ (𝑔:ω–onto→(ℤ × ℕ) → ((( / ↾
(ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ) |
32 | | zex 9221 |
. . . . . . . . 9
⊢ ℤ
∈ V |
33 | 32, 4 | xpex 4726 |
. . . . . . . 8
⊢ (ℤ
× ℕ) ∈ V |
34 | | resfunexg 5717 |
. . . . . . . 8
⊢ ((Fun ( /
↾ (ℤ × ℕ)) ∧ (ℤ × ℕ) ∈ V)
→ (( / ↾ (ℤ × ℕ)) ↾ (ℤ ×
ℕ)) ∈ V) |
35 | 18, 33, 34 | mp2an 424 |
. . . . . . 7
⊢ (( /
↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∈
V |
36 | | vex 2733 |
. . . . . . 7
⊢ 𝑔 ∈ V |
37 | 35, 36 | coex 5156 |
. . . . . 6
⊢ ((( /
↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘
𝑔) ∈
V |
38 | | foeq1 5416 |
. . . . . 6
⊢ (𝑓 = ((( / ↾ (ℤ
× ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔) → (𝑓:ω–onto→ℚ ↔ ((( / ↾ (ℤ ×
ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ)) |
39 | 37, 38 | spcev 2825 |
. . . . 5
⊢ (((( /
↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘
𝑔):ω–onto→ℚ → ∃𝑓 𝑓:ω–onto→ℚ) |
40 | 15, 31, 39 | 3syl 17 |
. . . 4
⊢ (𝑔:ω–1-1-onto→(ℤ × ℕ) → ∃𝑓 𝑓:ω–onto→ℚ) |
41 | 40 | exlimiv 1591 |
. . 3
⊢
(∃𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ) → ∃𝑓 𝑓:ω–onto→ℚ) |
42 | 14, 41 | ax-mp 5 |
. 2
⊢
∃𝑓 𝑓:ω–onto→ℚ |
43 | 10 | ensymi 6760 |
. . 3
⊢ ω
≈ ℕ |
44 | | qex 9591 |
. . . 4
⊢ ℚ
∈ V |
45 | | nnssq 9588 |
. . . 4
⊢ ℕ
⊆ ℚ |
46 | | ssdomg 6756 |
. . . 4
⊢ (ℚ
∈ V → (ℕ ⊆ ℚ → ℕ ≼
ℚ)) |
47 | 44, 45, 46 | mp2 16 |
. . 3
⊢ ℕ
≼ ℚ |
48 | | endomtr 6768 |
. . 3
⊢ ((ω
≈ ℕ ∧ ℕ ≼ ℚ) → ω ≼
ℚ) |
49 | 43, 47, 48 | mp2an 424 |
. 2
⊢ ω
≼ ℚ |
50 | | ctinf 12385 |
. 2
⊢ (ℚ
≈ ℕ ↔ (∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ DECID 𝑝 = 𝑞 ∧ ∃𝑓 𝑓:ω–onto→ℚ ∧ ω ≼
ℚ)) |
51 | 2, 42, 49, 50 | mpbir3an 1174 |
1
⊢ ℚ
≈ ℕ |