ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnnen GIF version

Theorem qnnen 12588
Description: The rational numbers are countably infinite. Corollary 8.1.23 of [AczelRathjen], p. 75. This is Metamath 100 proof #3. (Contributed by Jim Kingdon, 11-Aug-2023.)
Assertion
Ref Expression
qnnen ℚ ≈ ℕ

Proof of Theorem qnnen
Dummy variables 𝑓 𝑔 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qdceq 10314 . . 3 ((𝑝 ∈ ℚ ∧ 𝑞 ∈ ℚ) → DECID 𝑝 = 𝑞)
21rgen2a 2548 . 2 𝑝 ∈ ℚ ∀𝑞 ∈ ℚ DECID 𝑝 = 𝑞
3 znnen 12555 . . . . . . . 8 ℤ ≈ ℕ
4 nnex 8988 . . . . . . . . 9 ℕ ∈ V
54enref 6819 . . . . . . . 8 ℕ ≈ ℕ
6 xpen 6901 . . . . . . . 8 ((ℤ ≈ ℕ ∧ ℕ ≈ ℕ) → (ℤ × ℕ) ≈ (ℕ × ℕ))
73, 5, 6mp2an 426 . . . . . . 7 (ℤ × ℕ) ≈ (ℕ × ℕ)
8 xpnnen 12551 . . . . . . 7 (ℕ × ℕ) ≈ ℕ
97, 8entri 6840 . . . . . 6 (ℤ × ℕ) ≈ ℕ
10 nnenom 10505 . . . . . 6 ℕ ≈ ω
119, 10entri 6840 . . . . 5 (ℤ × ℕ) ≈ ω
1211ensymi 6836 . . . 4 ω ≈ (ℤ × ℕ)
13 bren 6801 . . . 4 (ω ≈ (ℤ × ℕ) ↔ ∃𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ))
1412, 13mpbi 145 . . 3 𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ)
15 f1ofo 5507 . . . . 5 (𝑔:ω–1-1-onto→(ℤ × ℕ) → 𝑔:ω–onto→(ℤ × ℕ))
16 divfnzn 9686 . . . . . . . . 9 ( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ)
17 fnfun 5351 . . . . . . . . 9 (( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) → Fun ( / ↾ (ℤ × ℕ)))
1816, 17ax-mp 5 . . . . . . . 8 Fun ( / ↾ (ℤ × ℕ))
19 fndm 5353 . . . . . . . . 9 (( / ↾ (ℤ × ℕ)) Fn (ℤ × ℕ) → dom ( / ↾ (ℤ × ℕ)) = (ℤ × ℕ))
20 eqimss2 3234 . . . . . . . . 9 (dom ( / ↾ (ℤ × ℕ)) = (ℤ × ℕ) → (ℤ × ℕ) ⊆ dom ( / ↾ (ℤ × ℕ)))
2116, 19, 20mp2b 8 . . . . . . . 8 (ℤ × ℕ) ⊆ dom ( / ↾ (ℤ × ℕ))
22 fores 5486 . . . . . . . 8 ((Fun ( / ↾ (ℤ × ℕ)) ∧ (ℤ × ℕ) ⊆ dom ( / ↾ (ℤ × ℕ))) → (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→(( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)))
2318, 21, 22mp2an 426 . . . . . . 7 (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→(( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ))
24 resima 4975 . . . . . . . . 9 (( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ( / “ (ℤ × ℕ))
25 df-q 9685 . . . . . . . . 9 ℚ = ( / “ (ℤ × ℕ))
2624, 25eqtr4i 2217 . . . . . . . 8 (( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ℚ
27 foeq3 5474 . . . . . . . 8 ((( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) = ℚ → ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→(( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) ↔ (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→ℚ))
2826, 27ax-mp 5 . . . . . . 7 ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→(( / ↾ (ℤ × ℕ)) “ (ℤ × ℕ)) ↔ (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→ℚ)
2923, 28mpbi 145 . . . . . 6 (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→ℚ
30 foco 5487 . . . . . 6 (((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)):(ℤ × ℕ)–onto→ℚ ∧ 𝑔:ω–onto→(ℤ × ℕ)) → ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ)
3129, 30mpan 424 . . . . 5 (𝑔:ω–onto→(ℤ × ℕ) → ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ)
32 zex 9326 . . . . . . . . 9 ℤ ∈ V
3332, 4xpex 4774 . . . . . . . 8 (ℤ × ℕ) ∈ V
34 resfunexg 5779 . . . . . . . 8 ((Fun ( / ↾ (ℤ × ℕ)) ∧ (ℤ × ℕ) ∈ V) → (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∈ V)
3518, 33, 34mp2an 426 . . . . . . 7 (( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∈ V
36 vex 2763 . . . . . . 7 𝑔 ∈ V
3735, 36coex 5211 . . . . . 6 ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔) ∈ V
38 foeq1 5472 . . . . . 6 (𝑓 = ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔) → (𝑓:ω–onto→ℚ ↔ ((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ))
3937, 38spcev 2855 . . . . 5 (((( / ↾ (ℤ × ℕ)) ↾ (ℤ × ℕ)) ∘ 𝑔):ω–onto→ℚ → ∃𝑓 𝑓:ω–onto→ℚ)
4015, 31, 393syl 17 . . . 4 (𝑔:ω–1-1-onto→(ℤ × ℕ) → ∃𝑓 𝑓:ω–onto→ℚ)
4140exlimiv 1609 . . 3 (∃𝑔 𝑔:ω–1-1-onto→(ℤ × ℕ) → ∃𝑓 𝑓:ω–onto→ℚ)
4214, 41ax-mp 5 . 2 𝑓 𝑓:ω–onto→ℚ
4310ensymi 6836 . . 3 ω ≈ ℕ
44 qex 9697 . . . 4 ℚ ∈ V
45 nnssq 9694 . . . 4 ℕ ⊆ ℚ
46 ssdomg 6832 . . . 4 (ℚ ∈ V → (ℕ ⊆ ℚ → ℕ ≼ ℚ))
4744, 45, 46mp2 16 . . 3 ℕ ≼ ℚ
48 endomtr 6844 . . 3 ((ω ≈ ℕ ∧ ℕ ≼ ℚ) → ω ≼ ℚ)
4943, 47, 48mp2an 426 . 2 ω ≼ ℚ
50 ctinf 12587 . 2 (ℚ ≈ ℕ ↔ (∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ DECID 𝑝 = 𝑞 ∧ ∃𝑓 𝑓:ω–onto→ℚ ∧ ω ≼ ℚ))
512, 42, 49, 50mpbir3an 1181 1 ℚ ≈ ℕ
Colors of variables: wff set class
Syntax hints:  wb 105  DECID wdc 835   = wceq 1364  wex 1503  wcel 2164  wral 2472  Vcvv 2760  wss 3153   class class class wbr 4029  ωcom 4622   × cxp 4657  dom cdm 4659  cres 4661  cima 4662  ccom 4663  Fun wfun 5248   Fn wfn 5249  ontowfo 5252  1-1-ontowf1o 5253  cen 6792  cdom 6793   / cdiv 8691  cn 8982  cz 9317  cq 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-pm 6705  df-en 6795  df-dom 6796  df-fin 6797  df-dju 7097  df-inl 7106  df-inr 7107  df-case 7143  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-dvds 11931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator