ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reltpos GIF version

Theorem reltpos 6015
Description: The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reltpos Rel tpos 𝐹

Proof of Theorem reltpos
StepHypRef Expression
1 tposssxp 6014 . 2 tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
2 relxp 4547 . 2 Rel ((dom 𝐹 ∪ {∅}) × ran 𝐹)
3 relss 4525 . 2 (tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹) → (Rel ((dom 𝐹 ∪ {∅}) × ran 𝐹) → Rel tpos 𝐹))
41, 2, 3mp2 16 1 Rel tpos 𝐹
Colors of variables: wff set class
Syntax hints:  cun 2997  wss 2999  c0 3286  {csn 3446   × cxp 4436  ccnv 4437  dom cdm 4438  ran crn 4439  Rel wrel 4443  tpos ctpos 6009
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-opab 3900  df-mpt 3901  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-tpos 6010
This theorem is referenced by:  brtpos2  6016  dftpos2  6026  dftpos3  6027  tpostpos  6029
  Copyright terms: Public domain W3C validator