| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reltpos | GIF version | ||
| Description: The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| reltpos | ⊢ Rel tpos 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposssxp 6393 | . 2 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
| 2 | relxp 4827 | . 2 ⊢ Rel ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
| 3 | relss 4805 | . 2 ⊢ (tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) → (Rel ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) → Rel tpos 𝐹)) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ Rel tpos 𝐹 |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3195 ⊆ wss 3197 ∅c0 3491 {csn 3666 × cxp 4716 ◡ccnv 4717 dom cdm 4718 ran crn 4719 Rel wrel 4723 tpos ctpos 6388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-mpt 4146 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-tpos 6389 |
| This theorem is referenced by: brtpos2 6395 dftpos2 6405 dftpos3 6406 tpostpos 6408 |
| Copyright terms: Public domain | W3C validator |