| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reltpos | GIF version | ||
| Description: The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| reltpos | ⊢ Rel tpos 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposssxp 6358 | . 2 ⊢ tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
| 2 | relxp 4802 | . 2 ⊢ Rel ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) | |
| 3 | relss 4780 | . 2 ⊢ (tpos 𝐹 ⊆ ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) → (Rel ((◡dom 𝐹 ∪ {∅}) × ran 𝐹) → Rel tpos 𝐹)) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ Rel tpos 𝐹 |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3172 ⊆ wss 3174 ∅c0 3468 {csn 3643 × cxp 4691 ◡ccnv 4692 dom cdm 4693 ran crn 4694 Rel wrel 4698 tpos ctpos 6353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-mpt 4123 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-tpos 6354 |
| This theorem is referenced by: brtpos2 6360 dftpos2 6370 dftpos3 6371 tpostpos 6373 |
| Copyright terms: Public domain | W3C validator |