ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reltpos GIF version

Theorem reltpos 6303
Description: The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reltpos Rel tpos 𝐹

Proof of Theorem reltpos
StepHypRef Expression
1 tposssxp 6302 . 2 tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹)
2 relxp 4768 . 2 Rel ((dom 𝐹 ∪ {∅}) × ran 𝐹)
3 relss 4746 . 2 (tpos 𝐹 ⊆ ((dom 𝐹 ∪ {∅}) × ran 𝐹) → (Rel ((dom 𝐹 ∪ {∅}) × ran 𝐹) → Rel tpos 𝐹))
41, 2, 3mp2 16 1 Rel tpos 𝐹
Colors of variables: wff set class
Syntax hints:  cun 3151  wss 3153  c0 3446  {csn 3618   × cxp 4657  ccnv 4658  dom cdm 4659  ran crn 4660  Rel wrel 4664  tpos ctpos 6297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-mpt 4092  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-tpos 6298
This theorem is referenced by:  brtpos2  6304  dftpos2  6314  dftpos3  6315  tpostpos  6317
  Copyright terms: Public domain W3C validator