Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relres | GIF version |
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
relres | ⊢ Rel (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4616 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss2 3343 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
3 | 1, 2 | eqsstri 3174 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
4 | relxp 4713 | . 2 ⊢ Rel (𝐵 × V) | |
5 | relss 4691 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
6 | 3, 4, 5 | mp2 16 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
Colors of variables: wff set class |
Syntax hints: Vcvv 2726 ∩ cin 3115 ⊆ wss 3116 × cxp 4602 ↾ cres 4606 Rel wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-opab 4044 df-xp 4610 df-rel 4611 df-res 4616 |
This theorem is referenced by: elres 4920 resiexg 4929 iss 4930 dfres2 4936 issref 4986 asymref 4989 poirr2 4996 cnvcnvres 5067 resco 5108 ressn 5144 funssres 5230 fnresdisj 5298 fnres 5304 fcnvres 5371 nfunsn 5520 fsnunfv 5686 resfunexgALT 6076 setsresg 12432 |
Copyright terms: Public domain | W3C validator |