ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relres GIF version

Theorem relres 4919
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
relres Rel (𝐴𝐵)

Proof of Theorem relres
StepHypRef Expression
1 df-res 4623 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 inss2 3348 . . 3 (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V)
31, 2eqsstri 3179 . 2 (𝐴𝐵) ⊆ (𝐵 × V)
4 relxp 4720 . 2 Rel (𝐵 × V)
5 relss 4698 . 2 ((𝐴𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴𝐵)))
63, 4, 5mp2 16 1 Rel (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  Vcvv 2730  cin 3120  wss 3121   × cxp 4609  cres 4613  Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-opab 4051  df-xp 4617  df-rel 4618  df-res 4623
This theorem is referenced by:  elres  4927  resiexg  4936  iss  4937  dfres2  4943  issref  4993  asymref  4996  poirr2  5003  cnvcnvres  5074  resco  5115  ressn  5151  funssres  5240  fnresdisj  5308  fnres  5314  fcnvres  5381  nfunsn  5530  fsnunfv  5697  resfunexgALT  6087  setsresg  12454
  Copyright terms: Public domain W3C validator