| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relres | GIF version | ||
| Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| relres | ⊢ Rel (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4705 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss2 3402 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
| 3 | 1, 2 | eqsstri 3233 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
| 4 | relxp 4802 | . 2 ⊢ Rel (𝐵 × V) | |
| 5 | relss 4780 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
| 6 | 3, 4, 5 | mp2 16 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2776 ∩ cin 3173 ⊆ wss 3174 × cxp 4691 ↾ cres 4695 Rel wrel 4698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-opab 4122 df-xp 4699 df-rel 4700 df-res 4705 |
| This theorem is referenced by: elres 5014 resiexg 5023 iss 5024 dfres2 5030 restidsing 5034 issref 5084 asymref 5087 poirr2 5094 cnvcnvres 5165 resco 5206 ressn 5242 funssres 5332 fnresdisj 5405 fnres 5412 fcnvres 5481 nfunsn 5634 fsnunfv 5808 resfunexgALT 6216 setsresg 12985 |
| Copyright terms: Public domain | W3C validator |