Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relres | GIF version |
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
relres | ⊢ Rel (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4623 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss2 3348 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
3 | 1, 2 | eqsstri 3179 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
4 | relxp 4720 | . 2 ⊢ Rel (𝐵 × V) | |
5 | relss 4698 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
6 | 3, 4, 5 | mp2 16 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
Colors of variables: wff set class |
Syntax hints: Vcvv 2730 ∩ cin 3120 ⊆ wss 3121 × cxp 4609 ↾ cres 4613 Rel wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-opab 4051 df-xp 4617 df-rel 4618 df-res 4623 |
This theorem is referenced by: elres 4927 resiexg 4936 iss 4937 dfres2 4943 issref 4993 asymref 4996 poirr2 5003 cnvcnvres 5074 resco 5115 ressn 5151 funssres 5240 fnresdisj 5308 fnres 5314 fcnvres 5381 nfunsn 5530 fsnunfv 5697 resfunexgALT 6087 setsresg 12454 |
Copyright terms: Public domain | W3C validator |