ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relres GIF version

Theorem relres 4783
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
relres Rel (𝐴𝐵)

Proof of Theorem relres
StepHypRef Expression
1 df-res 4489 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 inss2 3244 . . 3 (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V)
31, 2eqsstri 3079 . 2 (𝐴𝐵) ⊆ (𝐵 × V)
4 relxp 4586 . 2 Rel (𝐵 × V)
5 relss 4564 . 2 ((𝐴𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴𝐵)))
63, 4, 5mp2 16 1 Rel (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  Vcvv 2641  cin 3020  wss 3021   × cxp 4475  cres 4479  Rel wrel 4482
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-in 3027  df-ss 3034  df-opab 3930  df-xp 4483  df-rel 4484  df-res 4489
This theorem is referenced by:  elres  4791  resiexg  4800  iss  4801  dfres2  4807  issref  4857  asymref  4860  poirr2  4867  cnvcnvres  4938  resco  4979  ressn  5015  funssres  5101  fnresdisj  5169  fnres  5175  fcnvres  5242  nfunsn  5387  fsnunfv  5553  resfunexgALT  5939  setsresg  11779
  Copyright terms: Public domain W3C validator