ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relres GIF version

Theorem relres 4928
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
relres Rel (𝐴𝐵)

Proof of Theorem relres
StepHypRef Expression
1 df-res 4632 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 inss2 3354 . . 3 (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V)
31, 2eqsstri 3185 . 2 (𝐴𝐵) ⊆ (𝐵 × V)
4 relxp 4729 . 2 Rel (𝐵 × V)
5 relss 4707 . 2 ((𝐴𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴𝐵)))
63, 4, 5mp2 16 1 Rel (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  Vcvv 2735  cin 3126  wss 3127   × cxp 4618  cres 4622  Rel wrel 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-ss 3140  df-opab 4060  df-xp 4626  df-rel 4627  df-res 4632
This theorem is referenced by:  elres  4936  resiexg  4945  iss  4946  dfres2  4952  restidsing  4956  issref  5003  asymref  5006  poirr2  5013  cnvcnvres  5084  resco  5125  ressn  5161  funssres  5250  fnresdisj  5318  fnres  5324  fcnvres  5391  nfunsn  5541  fsnunfv  5709  resfunexgALT  6099  setsresg  12467
  Copyright terms: Public domain W3C validator