ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relres GIF version

Theorem relres 4970
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
relres Rel (𝐴𝐵)

Proof of Theorem relres
StepHypRef Expression
1 df-res 4671 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 inss2 3380 . . 3 (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V)
31, 2eqsstri 3211 . 2 (𝐴𝐵) ⊆ (𝐵 × V)
4 relxp 4768 . 2 Rel (𝐵 × V)
5 relss 4746 . 2 ((𝐴𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴𝐵)))
63, 4, 5mp2 16 1 Rel (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  Vcvv 2760  cin 3152  wss 3153   × cxp 4657  cres 4661  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-opab 4091  df-xp 4665  df-rel 4666  df-res 4671
This theorem is referenced by:  elres  4978  resiexg  4987  iss  4988  dfres2  4994  restidsing  4998  issref  5048  asymref  5051  poirr2  5058  cnvcnvres  5129  resco  5170  ressn  5206  funssres  5296  fnresdisj  5364  fnres  5370  fcnvres  5437  nfunsn  5589  fsnunfv  5759  resfunexgALT  6160  setsresg  12656
  Copyright terms: Public domain W3C validator