| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relres | GIF version | ||
| Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| relres | ⊢ Rel (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4675 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss2 3384 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
| 3 | 1, 2 | eqsstri 3215 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
| 4 | relxp 4772 | . 2 ⊢ Rel (𝐵 × V) | |
| 5 | relss 4750 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
| 6 | 3, 4, 5 | mp2 16 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2763 ∩ cin 3156 ⊆ wss 3157 × cxp 4661 ↾ cres 4665 Rel wrel 4668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-opab 4095 df-xp 4669 df-rel 4670 df-res 4675 |
| This theorem is referenced by: elres 4982 resiexg 4991 iss 4992 dfres2 4998 restidsing 5002 issref 5052 asymref 5055 poirr2 5062 cnvcnvres 5133 resco 5174 ressn 5210 funssres 5300 fnresdisj 5368 fnres 5374 fcnvres 5441 nfunsn 5593 fsnunfv 5763 resfunexgALT 6165 setsresg 12716 |
| Copyright terms: Public domain | W3C validator |