ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relres GIF version

Theorem relres 4728
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
relres Rel (𝐴𝐵)

Proof of Theorem relres
StepHypRef Expression
1 df-res 4440 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 inss2 3219 . . 3 (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V)
31, 2eqsstri 3054 . 2 (𝐴𝐵) ⊆ (𝐵 × V)
4 relxp 4535 . 2 Rel (𝐵 × V)
5 relss 4513 . 2 ((𝐴𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴𝐵)))
63, 4, 5mp2 16 1 Rel (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  Vcvv 2619  cin 2996  wss 2997   × cxp 4426  cres 4430  Rel wrel 4433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-in 3003  df-ss 3010  df-opab 3892  df-xp 4434  df-rel 4435  df-res 4440
This theorem is referenced by:  elres  4735  resiexg  4744  iss  4745  dfres2  4751  issref  4801  asymref  4804  poirr2  4811  cnvcnvres  4881  resco  4922  ressn  4958  funssres  5042  fnresdisj  5110  fnres  5116  fcnvres  5178  nfunsn  5322  fsnunfv  5481  resfunexgALT  5863
  Copyright terms: Public domain W3C validator