ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relres GIF version

Theorem relres 4971
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
relres Rel (𝐴𝐵)

Proof of Theorem relres
StepHypRef Expression
1 df-res 4672 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 inss2 3381 . . 3 (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V)
31, 2eqsstri 3212 . 2 (𝐴𝐵) ⊆ (𝐵 × V)
4 relxp 4769 . 2 Rel (𝐵 × V)
5 relss 4747 . 2 ((𝐴𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴𝐵)))
63, 4, 5mp2 16 1 Rel (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  Vcvv 2760  cin 3153  wss 3154   × cxp 4658  cres 4662  Rel wrel 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160  df-ss 3167  df-opab 4092  df-xp 4666  df-rel 4667  df-res 4672
This theorem is referenced by:  elres  4979  resiexg  4988  iss  4989  dfres2  4995  restidsing  4999  issref  5049  asymref  5052  poirr2  5059  cnvcnvres  5130  resco  5171  ressn  5207  funssres  5297  fnresdisj  5365  fnres  5371  fcnvres  5438  nfunsn  5590  fsnunfv  5760  resfunexgALT  6162  setsresg  12659
  Copyright terms: Public domain W3C validator