| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relres | GIF version | ||
| Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| relres | ⊢ Rel (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4686 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss2 3393 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
| 3 | 1, 2 | eqsstri 3224 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
| 4 | relxp 4783 | . 2 ⊢ Rel (𝐵 × V) | |
| 5 | relss 4761 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
| 6 | 3, 4, 5 | mp2 16 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2771 ∩ cin 3164 ⊆ wss 3165 × cxp 4672 ↾ cres 4676 Rel wrel 4679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-opab 4105 df-xp 4680 df-rel 4681 df-res 4686 |
| This theorem is referenced by: elres 4994 resiexg 5003 iss 5004 dfres2 5010 restidsing 5014 issref 5064 asymref 5067 poirr2 5074 cnvcnvres 5145 resco 5186 ressn 5222 funssres 5312 fnresdisj 5385 fnres 5391 fcnvres 5458 nfunsn 5610 fsnunfv 5784 resfunexgALT 6192 setsresg 12841 |
| Copyright terms: Public domain | W3C validator |