ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relres GIF version

Theorem relres 4975
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
relres Rel (𝐴𝐵)

Proof of Theorem relres
StepHypRef Expression
1 df-res 4676 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 inss2 3385 . . 3 (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V)
31, 2eqsstri 3216 . 2 (𝐴𝐵) ⊆ (𝐵 × V)
4 relxp 4773 . 2 Rel (𝐵 × V)
5 relss 4751 . 2 ((𝐴𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴𝐵)))
63, 4, 5mp2 16 1 Rel (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  Vcvv 2763  cin 3156  wss 3157   × cxp 4662  cres 4666  Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-opab 4096  df-xp 4670  df-rel 4671  df-res 4676
This theorem is referenced by:  elres  4983  resiexg  4992  iss  4993  dfres2  4999  restidsing  5003  issref  5053  asymref  5056  poirr2  5063  cnvcnvres  5134  resco  5175  ressn  5211  funssres  5301  fnresdisj  5371  fnres  5377  fcnvres  5444  nfunsn  5596  fsnunfv  5766  resfunexgALT  6174  setsresg  12741
  Copyright terms: Public domain W3C validator