ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relres GIF version

Theorem relres 5006
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
relres Rel (𝐴𝐵)

Proof of Theorem relres
StepHypRef Expression
1 df-res 4705 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 inss2 3402 . . 3 (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V)
31, 2eqsstri 3233 . 2 (𝐴𝐵) ⊆ (𝐵 × V)
4 relxp 4802 . 2 Rel (𝐵 × V)
5 relss 4780 . 2 ((𝐴𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴𝐵)))
63, 4, 5mp2 16 1 Rel (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  Vcvv 2776  cin 3173  wss 3174   × cxp 4691  cres 4695  Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187  df-opab 4122  df-xp 4699  df-rel 4700  df-res 4705
This theorem is referenced by:  elres  5014  resiexg  5023  iss  5024  dfres2  5030  restidsing  5034  issref  5084  asymref  5087  poirr2  5094  cnvcnvres  5165  resco  5206  ressn  5242  funssres  5332  fnresdisj  5405  fnres  5412  fcnvres  5481  nfunsn  5634  fsnunfv  5808  resfunexgALT  6216  setsresg  12985
  Copyright terms: Public domain W3C validator