ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relres GIF version

Theorem relres 4912
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
relres Rel (𝐴𝐵)

Proof of Theorem relres
StepHypRef Expression
1 df-res 4616 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 inss2 3343 . . 3 (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V)
31, 2eqsstri 3174 . 2 (𝐴𝐵) ⊆ (𝐵 × V)
4 relxp 4713 . 2 Rel (𝐵 × V)
5 relss 4691 . 2 ((𝐴𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴𝐵)))
63, 4, 5mp2 16 1 Rel (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  Vcvv 2726  cin 3115  wss 3116   × cxp 4602  cres 4606  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-opab 4044  df-xp 4610  df-rel 4611  df-res 4616
This theorem is referenced by:  elres  4920  resiexg  4929  iss  4930  dfres2  4936  issref  4986  asymref  4989  poirr2  4996  cnvcnvres  5067  resco  5108  ressn  5144  funssres  5230  fnresdisj  5298  fnres  5304  fcnvres  5371  nfunsn  5520  fsnunfv  5686  resfunexgALT  6076  setsresg  12432
  Copyright terms: Public domain W3C validator