ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relres GIF version

Theorem relres 5032
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
relres Rel (𝐴𝐵)

Proof of Theorem relres
StepHypRef Expression
1 df-res 4730 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 inss2 3425 . . 3 (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V)
31, 2eqsstri 3256 . 2 (𝐴𝐵) ⊆ (𝐵 × V)
4 relxp 4827 . 2 Rel (𝐵 × V)
5 relss 4805 . 2 ((𝐴𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴𝐵)))
63, 4, 5mp2 16 1 Rel (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  Vcvv 2799  cin 3196  wss 3197   × cxp 4716  cres 4720  Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-opab 4145  df-xp 4724  df-rel 4725  df-res 4730
This theorem is referenced by:  elres  5040  resiexg  5049  iss  5050  dfres2  5056  restidsing  5060  issref  5110  asymref  5113  poirr2  5120  cnvcnvres  5191  resco  5232  ressn  5268  funssres  5359  fnresdisj  5432  fnres  5439  fcnvres  5508  nfunsn  5663  fsnunfv  5839  resfunexgALT  6251  setsresg  13065
  Copyright terms: Public domain W3C validator