Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relres | GIF version |
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
relres | ⊢ Rel (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4632 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss2 3354 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
3 | 1, 2 | eqsstri 3185 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
4 | relxp 4729 | . 2 ⊢ Rel (𝐵 × V) | |
5 | relss 4707 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
6 | 3, 4, 5 | mp2 16 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
Colors of variables: wff set class |
Syntax hints: Vcvv 2735 ∩ cin 3126 ⊆ wss 3127 × cxp 4618 ↾ cres 4622 Rel wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-ss 3140 df-opab 4060 df-xp 4626 df-rel 4627 df-res 4632 |
This theorem is referenced by: elres 4936 resiexg 4945 iss 4946 dfres2 4952 restidsing 4956 issref 5003 asymref 5006 poirr2 5013 cnvcnvres 5084 resco 5125 ressn 5161 funssres 5250 fnresdisj 5318 fnres 5324 fcnvres 5391 nfunsn 5541 fsnunfv 5709 resfunexgALT 6099 setsresg 12467 |
Copyright terms: Public domain | W3C validator |