| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fun0 | GIF version | ||
| Description: The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.) |
| Ref | Expression |
|---|---|
| fun0 | ⊢ Fun ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 3510 | . 2 ⊢ ∅ ⊆ {〈∅, ∅〉} | |
| 2 | 0ex 4190 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2, 2 | funsn 5345 | . 2 ⊢ Fun {〈∅, ∅〉} |
| 4 | funss 5313 | . 2 ⊢ (∅ ⊆ {〈∅, ∅〉} → (Fun {〈∅, ∅〉} → Fun ∅)) | |
| 5 | 1, 3, 4 | mp2 16 | 1 ⊢ Fun ∅ |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3177 ∅c0 3471 {csn 3646 〈cop 3649 Fun wfun 5288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-fun 5296 |
| This theorem is referenced by: fn0 5419 f10 5582 ennnfonelemj0 12938 |
| Copyright terms: Public domain | W3C validator |