| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fun0 | GIF version | ||
| Description: The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.) |
| Ref | Expression |
|---|---|
| fun0 | ⊢ Fun ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 3530 | . 2 ⊢ ∅ ⊆ {〈∅, ∅〉} | |
| 2 | 0ex 4211 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2, 2 | funsn 5369 | . 2 ⊢ Fun {〈∅, ∅〉} |
| 4 | funss 5337 | . 2 ⊢ (∅ ⊆ {〈∅, ∅〉} → (Fun {〈∅, ∅〉} → Fun ∅)) | |
| 5 | 1, 3, 4 | mp2 16 | 1 ⊢ Fun ∅ |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3197 ∅c0 3491 {csn 3666 〈cop 3669 Fun wfun 5312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-fun 5320 |
| This theorem is referenced by: fn0 5443 f10 5608 ennnfonelemj0 12980 |
| Copyright terms: Public domain | W3C validator |