| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oawordriexmid | GIF version | ||
| Description: A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6554. (Contributed by Jim Kingdon, 15-May-2022.) |
| Ref | Expression |
|---|---|
| oawordriexmid.1 | ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) |
| Ref | Expression |
|---|---|
| oawordriexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6508 | . . . . 5 ⊢ 1o ∈ On | |
| 2 | oawordriexmid.1 | . . . . . . . 8 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) | |
| 3 | 2 | 3expa 1205 | . . . . . . 7 ⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) |
| 4 | 3 | expcom 116 | . . . . . 6 ⊢ (𝑐 ∈ On → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)))) |
| 5 | 4 | rgen 2558 | . . . . 5 ⊢ ∀𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) |
| 6 | oveq2 5951 | . . . . . . . . 9 ⊢ (𝑐 = 1o → (𝑎 +o 𝑐) = (𝑎 +o 1o)) | |
| 7 | oveq2 5951 | . . . . . . . . 9 ⊢ (𝑐 = 1o → (𝑏 +o 𝑐) = (𝑏 +o 1o)) | |
| 8 | 6, 7 | sseq12d 3223 | . . . . . . . 8 ⊢ (𝑐 = 1o → ((𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐) ↔ (𝑎 +o 1o) ⊆ (𝑏 +o 1o))) |
| 9 | 8 | imbi2d 230 | . . . . . . 7 ⊢ (𝑐 = 1o → ((𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)) ↔ (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o)))) |
| 10 | 9 | imbi2d 230 | . . . . . 6 ⊢ (𝑐 = 1o → (((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) ↔ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o))))) |
| 11 | 10 | rspcv 2872 | . . . . 5 ⊢ (1o ∈ On → (∀𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o))))) |
| 12 | 1, 5, 11 | mp2 16 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o))) |
| 13 | oa1suc 6552 | . . . . . 6 ⊢ (𝑎 ∈ On → (𝑎 +o 1o) = suc 𝑎) | |
| 14 | 13 | adantr 276 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +o 1o) = suc 𝑎) |
| 15 | oa1suc 6552 | . . . . . 6 ⊢ (𝑏 ∈ On → (𝑏 +o 1o) = suc 𝑏) | |
| 16 | 15 | adantl 277 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑏 +o 1o) = suc 𝑏) |
| 17 | 14, 16 | sseq12d 3223 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑎 +o 1o) ⊆ (𝑏 +o 1o) ↔ suc 𝑎 ⊆ suc 𝑏)) |
| 18 | 12, 17 | sylibd 149 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → suc 𝑎 ⊆ suc 𝑏)) |
| 19 | 18 | rgen2a 2559 | . 2 ⊢ ∀𝑎 ∈ On ∀𝑏 ∈ On (𝑎 ⊆ 𝑏 → suc 𝑎 ⊆ suc 𝑏) |
| 20 | 19 | onsucsssucexmid 4574 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 Oncon0 4409 suc csuc 4411 (class class class)co 5943 1oc1o 6494 +o coa 6498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-oadd 6505 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |