Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oawordriexmid | GIF version |
Description: A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6405. (Contributed by Jim Kingdon, 15-May-2022.) |
Ref | Expression |
---|---|
oawordriexmid.1 | ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) |
Ref | Expression |
---|---|
oawordriexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6360 | . . . . 5 ⊢ 1o ∈ On | |
2 | oawordriexmid.1 | . . . . . . . 8 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) | |
3 | 2 | 3expa 1182 | . . . . . . 7 ⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) |
4 | 3 | expcom 115 | . . . . . 6 ⊢ (𝑐 ∈ On → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)))) |
5 | 4 | rgen 2507 | . . . . 5 ⊢ ∀𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) |
6 | oveq2 5822 | . . . . . . . . 9 ⊢ (𝑐 = 1o → (𝑎 +o 𝑐) = (𝑎 +o 1o)) | |
7 | oveq2 5822 | . . . . . . . . 9 ⊢ (𝑐 = 1o → (𝑏 +o 𝑐) = (𝑏 +o 1o)) | |
8 | 6, 7 | sseq12d 3155 | . . . . . . . 8 ⊢ (𝑐 = 1o → ((𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐) ↔ (𝑎 +o 1o) ⊆ (𝑏 +o 1o))) |
9 | 8 | imbi2d 229 | . . . . . . 7 ⊢ (𝑐 = 1o → ((𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)) ↔ (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o)))) |
10 | 9 | imbi2d 229 | . . . . . 6 ⊢ (𝑐 = 1o → (((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) ↔ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o))))) |
11 | 10 | rspcv 2809 | . . . . 5 ⊢ (1o ∈ On → (∀𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o))))) |
12 | 1, 5, 11 | mp2 16 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o))) |
13 | oa1suc 6403 | . . . . . 6 ⊢ (𝑎 ∈ On → (𝑎 +o 1o) = suc 𝑎) | |
14 | 13 | adantr 274 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +o 1o) = suc 𝑎) |
15 | oa1suc 6403 | . . . . . 6 ⊢ (𝑏 ∈ On → (𝑏 +o 1o) = suc 𝑏) | |
16 | 15 | adantl 275 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑏 +o 1o) = suc 𝑏) |
17 | 14, 16 | sseq12d 3155 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑎 +o 1o) ⊆ (𝑏 +o 1o) ↔ suc 𝑎 ⊆ suc 𝑏)) |
18 | 12, 17 | sylibd 148 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → suc 𝑎 ⊆ suc 𝑏)) |
19 | 18 | rgen2a 2508 | . 2 ⊢ ∀𝑎 ∈ On ∀𝑏 ∈ On (𝑎 ⊆ 𝑏 → suc 𝑎 ⊆ suc 𝑏) |
20 | 19 | onsucsssucexmid 4480 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 ∧ w3a 963 = wceq 1332 ∈ wcel 2125 ∀wral 2432 ⊆ wss 3098 Oncon0 4318 suc csuc 4320 (class class class)co 5814 1oc1o 6346 +o coa 6350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-irdg 6307 df-1o 6353 df-oadd 6357 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |