ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oawordriexmid GIF version

Theorem oawordriexmid 6449
Description: A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6448. (Contributed by Jim Kingdon, 15-May-2022.)
Hypothesis
Ref Expression
oawordriexmid.1 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)))
Assertion
Ref Expression
oawordriexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable groups:   𝑎,𝑏,𝑐   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑏,𝑐)

Proof of Theorem oawordriexmid
StepHypRef Expression
1 1on 6402 . . . . 5 1o ∈ On
2 oawordriexmid.1 . . . . . . . 8 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)))
323expa 1198 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑐 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)))
43expcom 115 . . . . . 6 (𝑐 ∈ On → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))))
54rgen 2523 . . . . 5 𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)))
6 oveq2 5861 . . . . . . . . 9 (𝑐 = 1o → (𝑎 +o 𝑐) = (𝑎 +o 1o))
7 oveq2 5861 . . . . . . . . 9 (𝑐 = 1o → (𝑏 +o 𝑐) = (𝑏 +o 1o))
86, 7sseq12d 3178 . . . . . . . 8 (𝑐 = 1o → ((𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐) ↔ (𝑎 +o 1o) ⊆ (𝑏 +o 1o)))
98imbi2d 229 . . . . . . 7 (𝑐 = 1o → ((𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)) ↔ (𝑎𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o))))
109imbi2d 229 . . . . . 6 (𝑐 = 1o → (((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) ↔ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o)))))
1110rspcv 2830 . . . . 5 (1o ∈ On → (∀𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o)))))
121, 5, 11mp2 16 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o)))
13 oa1suc 6446 . . . . . 6 (𝑎 ∈ On → (𝑎 +o 1o) = suc 𝑎)
1413adantr 274 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +o 1o) = suc 𝑎)
15 oa1suc 6446 . . . . . 6 (𝑏 ∈ On → (𝑏 +o 1o) = suc 𝑏)
1615adantl 275 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑏 +o 1o) = suc 𝑏)
1714, 16sseq12d 3178 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑎 +o 1o) ⊆ (𝑏 +o 1o) ↔ suc 𝑎 ⊆ suc 𝑏))
1812, 17sylibd 148 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → suc 𝑎 ⊆ suc 𝑏))
1918rgen2a 2524 . 2 𝑎 ∈ On ∀𝑏 ∈ On (𝑎𝑏 → suc 𝑎 ⊆ suc 𝑏)
2019onsucsssucexmid 4511 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  w3a 973   = wceq 1348  wcel 2141  wral 2448  wss 3121  Oncon0 4348  suc csuc 4350  (class class class)co 5853  1oc1o 6388   +o coa 6392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator