ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oawordriexmid GIF version

Theorem oawordriexmid 6163
Description: A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6162. (Contributed by Jim Kingdon, 15-May-2022.)
Hypothesis
Ref Expression
oawordriexmid.1 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐)))
Assertion
Ref Expression
oawordriexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable groups:   𝑎,𝑏,𝑐   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑏,𝑐)

Proof of Theorem oawordriexmid
StepHypRef Expression
1 1on 6120 . . . . 5 1𝑜 ∈ On
2 oawordriexmid.1 . . . . . . . 8 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐)))
323expa 1139 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑐 ∈ On) → (𝑎𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐)))
43expcom 114 . . . . . 6 (𝑐 ∈ On → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐))))
54rgen 2422 . . . . 5 𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐)))
6 oveq2 5599 . . . . . . . . 9 (𝑐 = 1𝑜 → (𝑎 +𝑜 𝑐) = (𝑎 +𝑜 1𝑜))
7 oveq2 5599 . . . . . . . . 9 (𝑐 = 1𝑜 → (𝑏 +𝑜 𝑐) = (𝑏 +𝑜 1𝑜))
86, 7sseq12d 3039 . . . . . . . 8 (𝑐 = 1𝑜 → ((𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐) ↔ (𝑎 +𝑜 1𝑜) ⊆ (𝑏 +𝑜 1𝑜)))
98imbi2d 228 . . . . . . 7 (𝑐 = 1𝑜 → ((𝑎𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐)) ↔ (𝑎𝑏 → (𝑎 +𝑜 1𝑜) ⊆ (𝑏 +𝑜 1𝑜))))
109imbi2d 228 . . . . . 6 (𝑐 = 1𝑜 → (((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐))) ↔ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +𝑜 1𝑜) ⊆ (𝑏 +𝑜 1𝑜)))))
1110rspcv 2708 . . . . 5 (1𝑜 ∈ On → (∀𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +𝑜 𝑐) ⊆ (𝑏 +𝑜 𝑐))) → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +𝑜 1𝑜) ⊆ (𝑏 +𝑜 1𝑜)))))
121, 5, 11mp2 16 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +𝑜 1𝑜) ⊆ (𝑏 +𝑜 1𝑜)))
13 oa1suc 6160 . . . . . 6 (𝑎 ∈ On → (𝑎 +𝑜 1𝑜) = suc 𝑎)
1413adantr 270 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +𝑜 1𝑜) = suc 𝑎)
15 oa1suc 6160 . . . . . 6 (𝑏 ∈ On → (𝑏 +𝑜 1𝑜) = suc 𝑏)
1615adantl 271 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑏 +𝑜 1𝑜) = suc 𝑏)
1714, 16sseq12d 3039 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑎 +𝑜 1𝑜) ⊆ (𝑏 +𝑜 1𝑜) ↔ suc 𝑎 ⊆ suc 𝑏))
1812, 17sylibd 147 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → suc 𝑎 ⊆ suc 𝑏))
1918rgen2a 2423 . 2 𝑎 ∈ On ∀𝑏 ∈ On (𝑎𝑏 → suc 𝑎 ⊆ suc 𝑏)
2019onsucsssucexmid 4306 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 662  w3a 920   = wceq 1285  wcel 1434  wral 2353  wss 2984  Oncon0 4154  suc csuc 4156  (class class class)co 5591  1𝑜c1o 6106   +𝑜 coa 6110
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-1o 6113  df-oadd 6117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator