![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oawordriexmid | GIF version |
Description: A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6489. (Contributed by Jim Kingdon, 15-May-2022.) |
Ref | Expression |
---|---|
oawordriexmid.1 | ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) |
Ref | Expression |
---|---|
oawordriexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6443 | . . . . 5 ⊢ 1o ∈ On | |
2 | oawordriexmid.1 | . . . . . . . 8 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) | |
3 | 2 | 3expa 1205 | . . . . . . 7 ⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) |
4 | 3 | expcom 116 | . . . . . 6 ⊢ (𝑐 ∈ On → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)))) |
5 | 4 | rgen 2543 | . . . . 5 ⊢ ∀𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) |
6 | oveq2 5900 | . . . . . . . . 9 ⊢ (𝑐 = 1o → (𝑎 +o 𝑐) = (𝑎 +o 1o)) | |
7 | oveq2 5900 | . . . . . . . . 9 ⊢ (𝑐 = 1o → (𝑏 +o 𝑐) = (𝑏 +o 1o)) | |
8 | 6, 7 | sseq12d 3201 | . . . . . . . 8 ⊢ (𝑐 = 1o → ((𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐) ↔ (𝑎 +o 1o) ⊆ (𝑏 +o 1o))) |
9 | 8 | imbi2d 230 | . . . . . . 7 ⊢ (𝑐 = 1o → ((𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)) ↔ (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o)))) |
10 | 9 | imbi2d 230 | . . . . . 6 ⊢ (𝑐 = 1o → (((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) ↔ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o))))) |
11 | 10 | rspcv 2852 | . . . . 5 ⊢ (1o ∈ On → (∀𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o))))) |
12 | 1, 5, 11 | mp2 16 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o))) |
13 | oa1suc 6487 | . . . . . 6 ⊢ (𝑎 ∈ On → (𝑎 +o 1o) = suc 𝑎) | |
14 | 13 | adantr 276 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +o 1o) = suc 𝑎) |
15 | oa1suc 6487 | . . . . . 6 ⊢ (𝑏 ∈ On → (𝑏 +o 1o) = suc 𝑏) | |
16 | 15 | adantl 277 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑏 +o 1o) = suc 𝑏) |
17 | 14, 16 | sseq12d 3201 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑎 +o 1o) ⊆ (𝑏 +o 1o) ↔ suc 𝑎 ⊆ suc 𝑏)) |
18 | 12, 17 | sylibd 149 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → suc 𝑎 ⊆ suc 𝑏)) |
19 | 18 | rgen2a 2544 | . 2 ⊢ ∀𝑎 ∈ On ∀𝑏 ∈ On (𝑎 ⊆ 𝑏 → suc 𝑎 ⊆ suc 𝑏) |
20 | 19 | onsucsssucexmid 4541 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ∀wral 2468 ⊆ wss 3144 Oncon0 4378 suc csuc 4380 (class class class)co 5892 1oc1o 6429 +o coa 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-iord 4381 df-on 4383 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-ov 5895 df-oprab 5896 df-mpo 5897 df-1st 6160 df-2nd 6161 df-recs 6325 df-irdg 6390 df-1o 6436 df-oadd 6440 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |