ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oawordriexmid GIF version

Theorem oawordriexmid 6523
Description: A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6522. (Contributed by Jim Kingdon, 15-May-2022.)
Hypothesis
Ref Expression
oawordriexmid.1 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)))
Assertion
Ref Expression
oawordriexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable groups:   𝑎,𝑏,𝑐   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑏,𝑐)

Proof of Theorem oawordriexmid
StepHypRef Expression
1 1on 6476 . . . . 5 1o ∈ On
2 oawordriexmid.1 . . . . . . . 8 ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)))
323expa 1205 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑐 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)))
43expcom 116 . . . . . 6 (𝑐 ∈ On → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))))
54rgen 2547 . . . . 5 𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)))
6 oveq2 5926 . . . . . . . . 9 (𝑐 = 1o → (𝑎 +o 𝑐) = (𝑎 +o 1o))
7 oveq2 5926 . . . . . . . . 9 (𝑐 = 1o → (𝑏 +o 𝑐) = (𝑏 +o 1o))
86, 7sseq12d 3210 . . . . . . . 8 (𝑐 = 1o → ((𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐) ↔ (𝑎 +o 1o) ⊆ (𝑏 +o 1o)))
98imbi2d 230 . . . . . . 7 (𝑐 = 1o → ((𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)) ↔ (𝑎𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o))))
109imbi2d 230 . . . . . 6 (𝑐 = 1o → (((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) ↔ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o)))))
1110rspcv 2860 . . . . 5 (1o ∈ On → (∀𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o)))))
121, 5, 11mp2 16 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o)))
13 oa1suc 6520 . . . . . 6 (𝑎 ∈ On → (𝑎 +o 1o) = suc 𝑎)
1413adantr 276 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +o 1o) = suc 𝑎)
15 oa1suc 6520 . . . . . 6 (𝑏 ∈ On → (𝑏 +o 1o) = suc 𝑏)
1615adantl 277 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑏 +o 1o) = suc 𝑏)
1714, 16sseq12d 3210 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑎 +o 1o) ⊆ (𝑏 +o 1o) ↔ suc 𝑎 ⊆ suc 𝑏))
1812, 17sylibd 149 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → suc 𝑎 ⊆ suc 𝑏))
1918rgen2a 2548 . 2 𝑎 ∈ On ∀𝑏 ∈ On (𝑎𝑏 → suc 𝑎 ⊆ suc 𝑏)
2019onsucsssucexmid 4559 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2164  wral 2472  wss 3153  Oncon0 4394  suc csuc 4396  (class class class)co 5918  1oc1o 6462   +o coa 6466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator