| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oawordriexmid | GIF version | ||
| Description: A weak ordering property of ordinal addition which implies excluded middle. The property is proposition 8.7 of [TakeutiZaring] p. 59. Compare with oawordi 6613. (Contributed by Jim Kingdon, 15-May-2022.) |
| Ref | Expression |
|---|---|
| oawordriexmid.1 | ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) |
| Ref | Expression |
|---|---|
| oawordriexmid | ⊢ (𝜑 ∨ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6567 | . . . . 5 ⊢ 1o ∈ On | |
| 2 | oawordriexmid.1 | . . . . . . . 8 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) | |
| 3 | 2 | 3expa 1227 | . . . . . . 7 ⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑐 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) |
| 4 | 3 | expcom 116 | . . . . . 6 ⊢ (𝑐 ∈ On → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)))) |
| 5 | 4 | rgen 2583 | . . . . 5 ⊢ ∀𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) |
| 6 | oveq2 6008 | . . . . . . . . 9 ⊢ (𝑐 = 1o → (𝑎 +o 𝑐) = (𝑎 +o 1o)) | |
| 7 | oveq2 6008 | . . . . . . . . 9 ⊢ (𝑐 = 1o → (𝑏 +o 𝑐) = (𝑏 +o 1o)) | |
| 8 | 6, 7 | sseq12d 3255 | . . . . . . . 8 ⊢ (𝑐 = 1o → ((𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐) ↔ (𝑎 +o 1o) ⊆ (𝑏 +o 1o))) |
| 9 | 8 | imbi2d 230 | . . . . . . 7 ⊢ (𝑐 = 1o → ((𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐)) ↔ (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o)))) |
| 10 | 9 | imbi2d 230 | . . . . . 6 ⊢ (𝑐 = 1o → (((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) ↔ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o))))) |
| 11 | 10 | rspcv 2903 | . . . . 5 ⊢ (1o ∈ On → (∀𝑐 ∈ On ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 𝑐) ⊆ (𝑏 +o 𝑐))) → ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o))))) |
| 12 | 1, 5, 11 | mp2 16 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → (𝑎 +o 1o) ⊆ (𝑏 +o 1o))) |
| 13 | oa1suc 6611 | . . . . . 6 ⊢ (𝑎 ∈ On → (𝑎 +o 1o) = suc 𝑎) | |
| 14 | 13 | adantr 276 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +o 1o) = suc 𝑎) |
| 15 | oa1suc 6611 | . . . . . 6 ⊢ (𝑏 ∈ On → (𝑏 +o 1o) = suc 𝑏) | |
| 16 | 15 | adantl 277 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑏 +o 1o) = suc 𝑏) |
| 17 | 14, 16 | sseq12d 3255 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑎 +o 1o) ⊆ (𝑏 +o 1o) ↔ suc 𝑎 ⊆ suc 𝑏)) |
| 18 | 12, 17 | sylibd 149 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝑏 → suc 𝑎 ⊆ suc 𝑏)) |
| 19 | 18 | rgen2a 2584 | . 2 ⊢ ∀𝑎 ∈ On ∀𝑏 ∈ On (𝑎 ⊆ 𝑏 → suc 𝑎 ⊆ suc 𝑏) |
| 20 | 19 | onsucsssucexmid 4618 | 1 ⊢ (𝜑 ∨ ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 Oncon0 4453 suc csuc 4455 (class class class)co 6000 1oc1o 6553 +o coa 6557 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-oadd 6564 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |