ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domfiexmid GIF version

Theorem domfiexmid 6856
Description: If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
Hypothesis
Ref Expression
domfiexmid.1 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
Assertion
Ref Expression
domfiexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem domfiexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ex 4116 . . . 4 ∅ ∈ V
2 snfig 6792 . . . 4 (∅ ∈ V → {∅} ∈ Fin)
31, 2ax-mp 5 . . 3 {∅} ∈ Fin
4 ssrab2 3232 . . . 4 {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}
5 ssdomg 6756 . . . 4 ({∅} ∈ Fin → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}))
63, 4, 5mp2 16 . . 3 {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}
7 domfiexmid.1 . . . . . 6 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
87gen2 1443 . . . . 5 𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
9 p0ex 4174 . . . . . 6 {∅} ∈ V
10 eleq1 2233 . . . . . . . . 9 (𝑥 = {∅} → (𝑥 ∈ Fin ↔ {∅} ∈ Fin))
11 breq2 3993 . . . . . . . . 9 (𝑥 = {∅} → (𝑦𝑥𝑦 ≼ {∅}))
1210, 11anbi12d 470 . . . . . . . 8 (𝑥 = {∅} → ((𝑥 ∈ Fin ∧ 𝑦𝑥) ↔ ({∅} ∈ Fin ∧ 𝑦 ≼ {∅})))
1312imbi1d 230 . . . . . . 7 (𝑥 = {∅} → (((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin)))
1413albidv 1817 . . . . . 6 (𝑥 = {∅} → (∀𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) ↔ ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin)))
159, 14spcv 2824 . . . . 5 (∀𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) → ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin))
168, 15ax-mp 5 . . . 4 𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin)
179rabex 4133 . . . . 5 {𝑧 ∈ {∅} ∣ 𝜑} ∈ V
18 breq1 3992 . . . . . . 7 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ≼ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}))
1918anbi2d 461 . . . . . 6 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) ↔ ({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅})))
20 eleq1 2233 . . . . . 6 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ∈ Fin ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin))
2119, 20imbi12d 233 . . . . 5 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → ((({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)))
2217, 21spcv 2824 . . . 4 (∀𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin) → (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin))
2316, 22ax-mp 5 . . 3 (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)
243, 6, 23mp2an 424 . 2 {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin
2524ssfilem 6853 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  wal 1346   = wceq 1348  wcel 2141  {crab 2452  Vcvv 2730  wss 3121  c0 3414  {csn 3583   class class class wbr 3989  cdom 6717  Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator