| Step | Hyp | Ref
| Expression |
| 1 | | 0ex 4161 |
. . . 4
⊢ ∅
∈ V |
| 2 | | snfig 6882 |
. . . 4
⊢ (∅
∈ V → {∅} ∈ Fin) |
| 3 | 1, 2 | ax-mp 5 |
. . 3
⊢ {∅}
∈ Fin |
| 4 | | ssrab2 3269 |
. . . 4
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ⊆
{∅} |
| 5 | | ssdomg 6846 |
. . . 4
⊢
({∅} ∈ Fin → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → {𝑧 ∈ {∅} ∣ 𝜑} ≼
{∅})) |
| 6 | 3, 4, 5 | mp2 16 |
. . 3
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ≼
{∅} |
| 7 | | domfiexmid.1 |
. . . . . 6
⊢ ((𝑥 ∈ Fin ∧ 𝑦 ≼ 𝑥) → 𝑦 ∈ Fin) |
| 8 | 7 | gen2 1464 |
. . . . 5
⊢
∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ≼ 𝑥) → 𝑦 ∈ Fin) |
| 9 | | p0ex 4222 |
. . . . . 6
⊢ {∅}
∈ V |
| 10 | | eleq1 2259 |
. . . . . . . . 9
⊢ (𝑥 = {∅} → (𝑥 ∈ Fin ↔ {∅}
∈ Fin)) |
| 11 | | breq2 4038 |
. . . . . . . . 9
⊢ (𝑥 = {∅} → (𝑦 ≼ 𝑥 ↔ 𝑦 ≼ {∅})) |
| 12 | 10, 11 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑥 = {∅} → ((𝑥 ∈ Fin ∧ 𝑦 ≼ 𝑥) ↔ ({∅} ∈ Fin ∧ 𝑦 ≼
{∅}))) |
| 13 | 12 | imbi1d 231 |
. . . . . . 7
⊢ (𝑥 = {∅} → (((𝑥 ∈ Fin ∧ 𝑦 ≼ 𝑥) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin
∧ 𝑦 ≼ {∅})
→ 𝑦 ∈
Fin))) |
| 14 | 13 | albidv 1838 |
. . . . . 6
⊢ (𝑥 = {∅} →
(∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ≼ 𝑥) → 𝑦 ∈ Fin) ↔ ∀𝑦(({∅} ∈ Fin ∧
𝑦 ≼ {∅}) →
𝑦 ∈
Fin))) |
| 15 | 9, 14 | spcv 2858 |
. . . . 5
⊢
(∀𝑥∀𝑦((𝑥 ∈ Fin ∧ 𝑦 ≼ 𝑥) → 𝑦 ∈ Fin) → ∀𝑦(({∅} ∈ Fin ∧
𝑦 ≼ {∅}) →
𝑦 ∈
Fin)) |
| 16 | 8, 15 | ax-mp 5 |
. . . 4
⊢
∀𝑦(({∅}
∈ Fin ∧ 𝑦 ≼
{∅}) → 𝑦 ∈
Fin) |
| 17 | 9 | rabex 4178 |
. . . . 5
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ V |
| 18 | | breq1 4037 |
. . . . . . 7
⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ≼ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅})) |
| 19 | 18 | anbi2d 464 |
. . . . . 6
⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) ↔
({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}))) |
| 20 | | eleq1 2259 |
. . . . . 6
⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ∈ Fin ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)) |
| 21 | 19, 20 | imbi12d 234 |
. . . . 5
⊢ (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → ((({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin) ↔ (({∅}
∈ Fin ∧ {𝑧 ∈
{∅} ∣ 𝜑} ≼
{∅}) → {𝑧 ∈
{∅} ∣ 𝜑} ∈
Fin))) |
| 22 | 17, 21 | spcv 2858 |
. . . 4
⊢
(∀𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin) → (({∅}
∈ Fin ∧ {𝑧 ∈
{∅} ∣ 𝜑} ≼
{∅}) → {𝑧 ∈
{∅} ∣ 𝜑} ∈
Fin)) |
| 23 | 16, 22 | ax-mp 5 |
. . 3
⊢
(({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin) |
| 24 | 3, 6, 23 | mp2an 426 |
. 2
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin |
| 25 | 24 | ssfilem 6945 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |