ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domfiexmid GIF version

Theorem domfiexmid 6934
Description: If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
Hypothesis
Ref Expression
domfiexmid.1 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
Assertion
Ref Expression
domfiexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem domfiexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ex 4156 . . . 4 ∅ ∈ V
2 snfig 6868 . . . 4 (∅ ∈ V → {∅} ∈ Fin)
31, 2ax-mp 5 . . 3 {∅} ∈ Fin
4 ssrab2 3264 . . . 4 {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}
5 ssdomg 6832 . . . 4 ({∅} ∈ Fin → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}))
63, 4, 5mp2 16 . . 3 {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}
7 domfiexmid.1 . . . . . 6 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
87gen2 1461 . . . . 5 𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
9 p0ex 4217 . . . . . 6 {∅} ∈ V
10 eleq1 2256 . . . . . . . . 9 (𝑥 = {∅} → (𝑥 ∈ Fin ↔ {∅} ∈ Fin))
11 breq2 4033 . . . . . . . . 9 (𝑥 = {∅} → (𝑦𝑥𝑦 ≼ {∅}))
1210, 11anbi12d 473 . . . . . . . 8 (𝑥 = {∅} → ((𝑥 ∈ Fin ∧ 𝑦𝑥) ↔ ({∅} ∈ Fin ∧ 𝑦 ≼ {∅})))
1312imbi1d 231 . . . . . . 7 (𝑥 = {∅} → (((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin)))
1413albidv 1835 . . . . . 6 (𝑥 = {∅} → (∀𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) ↔ ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin)))
159, 14spcv 2854 . . . . 5 (∀𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) → ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin))
168, 15ax-mp 5 . . . 4 𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin)
179rabex 4173 . . . . 5 {𝑧 ∈ {∅} ∣ 𝜑} ∈ V
18 breq1 4032 . . . . . . 7 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ≼ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}))
1918anbi2d 464 . . . . . 6 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) ↔ ({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅})))
20 eleq1 2256 . . . . . 6 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ∈ Fin ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin))
2119, 20imbi12d 234 . . . . 5 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → ((({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)))
2217, 21spcv 2854 . . . 4 (∀𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin) → (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin))
2316, 22ax-mp 5 . . 3 (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)
243, 6, 23mp2an 426 . 2 {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin
2524ssfilem 6931 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  wal 1362   = wceq 1364  wcel 2164  {crab 2476  Vcvv 2760  wss 3153  c0 3446  {csn 3618   class class class wbr 4029  cdom 6793  Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator