ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domfiexmid GIF version

Theorem domfiexmid 6891
Description: If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
Hypothesis
Ref Expression
domfiexmid.1 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
Assertion
Ref Expression
domfiexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem domfiexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ex 4142 . . . 4 ∅ ∈ V
2 snfig 6827 . . . 4 (∅ ∈ V → {∅} ∈ Fin)
31, 2ax-mp 5 . . 3 {∅} ∈ Fin
4 ssrab2 3252 . . . 4 {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}
5 ssdomg 6791 . . . 4 ({∅} ∈ Fin → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}))
63, 4, 5mp2 16 . . 3 {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}
7 domfiexmid.1 . . . . . 6 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
87gen2 1460 . . . . 5 𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
9 p0ex 4200 . . . . . 6 {∅} ∈ V
10 eleq1 2250 . . . . . . . . 9 (𝑥 = {∅} → (𝑥 ∈ Fin ↔ {∅} ∈ Fin))
11 breq2 4019 . . . . . . . . 9 (𝑥 = {∅} → (𝑦𝑥𝑦 ≼ {∅}))
1210, 11anbi12d 473 . . . . . . . 8 (𝑥 = {∅} → ((𝑥 ∈ Fin ∧ 𝑦𝑥) ↔ ({∅} ∈ Fin ∧ 𝑦 ≼ {∅})))
1312imbi1d 231 . . . . . . 7 (𝑥 = {∅} → (((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin)))
1413albidv 1834 . . . . . 6 (𝑥 = {∅} → (∀𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) ↔ ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin)))
159, 14spcv 2843 . . . . 5 (∀𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) → ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin))
168, 15ax-mp 5 . . . 4 𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin)
179rabex 4159 . . . . 5 {𝑧 ∈ {∅} ∣ 𝜑} ∈ V
18 breq1 4018 . . . . . . 7 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ≼ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}))
1918anbi2d 464 . . . . . 6 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) ↔ ({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅})))
20 eleq1 2250 . . . . . 6 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ∈ Fin ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin))
2119, 20imbi12d 234 . . . . 5 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → ((({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)))
2217, 21spcv 2843 . . . 4 (∀𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin) → (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin))
2316, 22ax-mp 5 . . 3 (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)
243, 6, 23mp2an 426 . 2 {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin
2524ssfilem 6888 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  wal 1361   = wceq 1363  wcel 2158  {crab 2469  Vcvv 2749  wss 3141  c0 3434  {csn 3604   class class class wbr 4015  cdom 6752  Fincfn 6753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-id 4305  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-1o 6430  df-er 6548  df-en 6754  df-dom 6755  df-fin 6756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator