ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domfiexmid GIF version

Theorem domfiexmid 6674
Description: If any set dominated by a finite set is finite, excluded middle follows. (Contributed by Jim Kingdon, 3-Feb-2022.)
Hypothesis
Ref Expression
domfiexmid.1 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
Assertion
Ref Expression
domfiexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem domfiexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ex 3987 . . . 4 ∅ ∈ V
2 snfig 6611 . . . 4 (∅ ∈ V → {∅} ∈ Fin)
31, 2ax-mp 7 . . 3 {∅} ∈ Fin
4 ssrab2 3121 . . . 4 {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}
5 ssdomg 6575 . . . 4 ({∅} ∈ Fin → ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} → {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}))
63, 4, 5mp2 16 . . 3 {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}
7 domfiexmid.1 . . . . . 6 ((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
87gen2 1391 . . . . 5 𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
9 p0ex 4044 . . . . . 6 {∅} ∈ V
10 eleq1 2157 . . . . . . . . 9 (𝑥 = {∅} → (𝑥 ∈ Fin ↔ {∅} ∈ Fin))
11 breq2 3871 . . . . . . . . 9 (𝑥 = {∅} → (𝑦𝑥𝑦 ≼ {∅}))
1210, 11anbi12d 458 . . . . . . . 8 (𝑥 = {∅} → ((𝑥 ∈ Fin ∧ 𝑦𝑥) ↔ ({∅} ∈ Fin ∧ 𝑦 ≼ {∅})))
1312imbi1d 230 . . . . . . 7 (𝑥 = {∅} → (((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin)))
1413albidv 1759 . . . . . 6 (𝑥 = {∅} → (∀𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) ↔ ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin)))
159, 14spcv 2726 . . . . 5 (∀𝑥𝑦((𝑥 ∈ Fin ∧ 𝑦𝑥) → 𝑦 ∈ Fin) → ∀𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin))
168, 15ax-mp 7 . . . 4 𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin)
179rabex 4004 . . . . 5 {𝑧 ∈ {∅} ∣ 𝜑} ∈ V
18 breq1 3870 . . . . . . 7 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ≼ {∅} ↔ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}))
1918anbi2d 453 . . . . . 6 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) ↔ ({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅})))
20 eleq1 2157 . . . . . 6 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ∈ Fin ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin))
2119, 20imbi12d 233 . . . . 5 (𝑦 = {𝑧 ∈ {∅} ∣ 𝜑} → ((({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin) ↔ (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)))
2217, 21spcv 2726 . . . 4 (∀𝑦(({∅} ∈ Fin ∧ 𝑦 ≼ {∅}) → 𝑦 ∈ Fin) → (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin))
2316, 22ax-mp 7 . . 3 (({∅} ∈ Fin ∧ {𝑧 ∈ {∅} ∣ 𝜑} ≼ {∅}) → {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin)
243, 6, 23mp2an 418 . 2 {𝑧 ∈ {∅} ∣ 𝜑} ∈ Fin
2524ssfilem 6671 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 667  wal 1294   = wceq 1296  wcel 1445  {crab 2374  Vcvv 2633  wss 3013  c0 3302  {csn 3466   class class class wbr 3867  cdom 6536  Fincfn 6537
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-id 4144  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-1o 6219  df-er 6332  df-en 6538  df-dom 6539  df-fin 6540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator