ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvdm GIF version

Theorem funfvdm 5642
Description: A simplified expression for the value of a function when we know it's a function. (Contributed by Jim Kingdon, 1-Jan-2019.)
Assertion
Ref Expression
funfvdm ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = (𝐹 “ {𝐴}))

Proof of Theorem funfvdm
StepHypRef Expression
1 funfvex 5593 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
2 unisng 3867 . . 3 ((𝐹𝐴) ∈ V → {(𝐹𝐴)} = (𝐹𝐴))
31, 2syl 14 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹𝐴))
4 eqid 2205 . . . . 5 dom 𝐹 = dom 𝐹
5 df-fn 5274 . . . . 5 (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹))
64, 5mpbiran2 944 . . . 4 (𝐹 Fn dom 𝐹 ↔ Fun 𝐹)
7 fnsnfv 5638 . . . 4 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
86, 7sylanbr 285 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
98unieqd 3861 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
103, 9eqtr3d 2240 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = (𝐹 “ {𝐴}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  Vcvv 2772  {csn 3633   cuni 3850  dom cdm 4675  cima 4678  Fun wfun 5265   Fn wfn 5266  cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279
This theorem is referenced by:  funfvdm2  5643  fvun1  5645
  Copyright terms: Public domain W3C validator