| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfvdm | GIF version | ||
| Description: A simplified expression for the value of a function when we know it's a function. (Contributed by Jim Kingdon, 1-Jan-2019.) |
| Ref | Expression |
|---|---|
| funfvdm | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvex 5616 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ V) | |
| 2 | unisng 3881 | . . 3 ⊢ ((𝐹‘𝐴) ∈ V → ∪ {(𝐹‘𝐴)} = (𝐹‘𝐴)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∪ {(𝐹‘𝐴)} = (𝐹‘𝐴)) |
| 4 | eqid 2207 | . . . . 5 ⊢ dom 𝐹 = dom 𝐹 | |
| 5 | df-fn 5293 | . . . . 5 ⊢ (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹)) | |
| 6 | 4, 5 | mpbiran2 944 | . . . 4 ⊢ (𝐹 Fn dom 𝐹 ↔ Fun 𝐹) |
| 7 | fnsnfv 5661 | . . . 4 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
| 8 | 6, 7 | sylanbr 285 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
| 9 | 8 | unieqd 3875 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ∪ {(𝐹‘𝐴)} = ∪ (𝐹 “ {𝐴})) |
| 10 | 3, 9 | eqtr3d 2242 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 Vcvv 2776 {csn 3643 ∪ cuni 3864 dom cdm 4693 “ cima 4696 Fun wfun 5284 Fn wfn 5285 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: funfvdm2 5666 fvun1 5668 |
| Copyright terms: Public domain | W3C validator |