ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvdm GIF version

Theorem funfvdm 5621
Description: A simplified expression for the value of a function when we know it's a function. (Contributed by Jim Kingdon, 1-Jan-2019.)
Assertion
Ref Expression
funfvdm ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = (𝐹 “ {𝐴}))

Proof of Theorem funfvdm
StepHypRef Expression
1 funfvex 5572 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
2 unisng 3853 . . 3 ((𝐹𝐴) ∈ V → {(𝐹𝐴)} = (𝐹𝐴))
31, 2syl 14 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹𝐴))
4 eqid 2193 . . . . 5 dom 𝐹 = dom 𝐹
5 df-fn 5258 . . . . 5 (𝐹 Fn dom 𝐹 ↔ (Fun 𝐹 ∧ dom 𝐹 = dom 𝐹))
64, 5mpbiran2 943 . . . 4 (𝐹 Fn dom 𝐹 ↔ Fun 𝐹)
7 fnsnfv 5617 . . . 4 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
86, 7sylanbr 285 . . 3 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
98unieqd 3847 . 2 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
103, 9eqtr3d 2228 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) = (𝐹 “ {𝐴}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  {csn 3619   cuni 3836  dom cdm 4660  cima 4663  Fun wfun 5249   Fn wfn 5250  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263
This theorem is referenced by:  funfvdm2  5622  fvun1  5624
  Copyright terms: Public domain W3C validator