ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toptopon GIF version

Theorem toptopon 14186
Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
toptopon.1 𝑋 = 𝐽
Assertion
Ref Expression
toptopon (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))

Proof of Theorem toptopon
StepHypRef Expression
1 toptopon.1 . . 3 𝑋 = 𝐽
2 istopon 14181 . . 3 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
31, 2mpbiran2 943 . 2 (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top)
43bicomi 132 1 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2164   cuni 3835  cfv 5254  Topctop 14165  TopOnctopon 14178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-topon 14179
This theorem is referenced by:  toptopon2  14187  eltpsi  14209  restuni  14340  stoig  14341  iscn2  14368  lmcvg  14385  cnpnei  14387  cnss1  14394  cnss2  14395  cncnpi  14396  cncnp2m  14399  cnnei  14400  cnrest  14403  cnrest2  14404  cnrest2r  14405  cnptoprest  14407  cnptoprest2  14408  lmss  14414  txuni  14431  txcnmpt  14441  txcn  14443  cnmpt11  14451  cnmpt11f  14452  imasnopn  14467  hmeof1o  14477  hmeores  14483  txhmeo  14487  retopon  14694
  Copyright terms: Public domain W3C validator