ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toptopon GIF version

Theorem toptopon 14338
Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
toptopon.1 𝑋 = 𝐽
Assertion
Ref Expression
toptopon (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))

Proof of Theorem toptopon
StepHypRef Expression
1 toptopon.1 . . 3 𝑋 = 𝐽
2 istopon 14333 . . 3 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
31, 2mpbiran2 943 . 2 (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top)
43bicomi 132 1 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2167   cuni 3840  cfv 5259  Topctop 14317  TopOnctopon 14330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-topon 14331
This theorem is referenced by:  toptopon2  14339  eltpsi  14361  restuni  14492  stoig  14493  iscn2  14520  lmcvg  14537  cnpnei  14539  cnss1  14546  cnss2  14547  cncnpi  14548  cncnp2m  14551  cnnei  14552  cnrest  14555  cnrest2  14556  cnrest2r  14557  cnptoprest  14559  cnptoprest2  14560  lmss  14566  txuni  14583  txcnmpt  14593  txcn  14595  cnmpt11  14603  cnmpt11f  14604  imasnopn  14619  hmeof1o  14629  hmeores  14635  txhmeo  14639  retopon  14846
  Copyright terms: Public domain W3C validator