ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toptopon GIF version

Theorem toptopon 12810
Description: Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
toptopon.1 𝑋 = 𝐽
Assertion
Ref Expression
toptopon (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))

Proof of Theorem toptopon
StepHypRef Expression
1 toptopon.1 . . 3 𝑋 = 𝐽
2 istopon 12805 . . 3 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
31, 2mpbiran2 936 . 2 (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐽 ∈ Top)
43bicomi 131 1 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  wcel 2141   cuni 3796  cfv 5198  Topctop 12789  TopOnctopon 12802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-topon 12803
This theorem is referenced by:  toptopon2  12811  eltpsi  12833  restuni  12966  stoig  12967  iscn2  12994  lmcvg  13011  cnpnei  13013  cnss1  13020  cnss2  13021  cncnpi  13022  cncnp2m  13025  cnnei  13026  cnrest  13029  cnrest2  13030  cnrest2r  13031  cnptoprest  13033  cnptoprest2  13034  lmss  13040  txuni  13057  txcnmpt  13067  txcn  13069  cnmpt11  13077  cnmpt11f  13078  imasnopn  13093  hmeof1o  13103  hmeores  13109  txhmeo  13113  retopon  13320
  Copyright terms: Public domain W3C validator