| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqresr | GIF version | ||
| Description: Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) |
| Ref | Expression |
|---|---|
| eqresr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eqresr | ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . 2 ⊢ 0R = 0R | |
| 2 | eqresr.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 0r 7862 | . . . 4 ⊢ 0R ∈ R | |
| 4 | 3 | elexi 2783 | . . 3 ⊢ 0R ∈ V |
| 5 | 2, 4 | opth 4280 | . 2 ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ (𝐴 = 𝐵 ∧ 0R = 0R)) |
| 6 | 1, 5 | mpbiran2 943 | 1 ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 ∈ wcel 2175 Vcvv 2771 〈cop 3635 Rcnr 7409 0Rc0r 7410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-lti 7419 df-plpq 7456 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-plqqs 7461 df-mqqs 7462 df-1nqqs 7463 df-rq 7464 df-ltnqqs 7465 df-inp 7578 df-i1p 7579 df-enr 7838 df-nr 7839 df-0r 7843 |
| This theorem is referenced by: ltresr 7951 axpre-apti 7997 |
| Copyright terms: Public domain | W3C validator |